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Abstract. Emperor penguins breed during the Antarctic winter and have to
endure temperatures as low as −50 ◦C and wind speeds of up to 200 km h−1.
To conserve energy, they form densely packed huddles with a triangular
lattice structure. Video recordings from previous studies revealed coordinated
movements in regular wave-like patterns within these huddles. It is thought
that these waves are triggered by individual penguins that locally disturb the
huddle structure, and that the traveling wave serves to remove the lattice defects
and restore order. The mechanisms that govern wave propagation are currently
unknown, however. Moreover, it is unknown if the waves are always triggered by
the same penguin in a huddle. Here, we present a model in which the observed
wave patterns emerge from simple rules involving only the interactions between
directly neighboring individuals, similar to the interaction rules found in other
jammed systems, e.g. between cars in a traffic jam. Our model predicts that a
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traveling wave can be triggered by a forward step of any individual penguin
located within a densely packed huddle. This prediction is confirmed by optical
flow velocimetry of the video recordings of emperor penguins in their natural
habitat.

S Online supplementary data available from stacks.iop.org/NJP/15/125022/
mmedia
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1. Introduction

The emperor penguin (Aptenodytes forsteri) is the only vertebrate species that breeds during
the severe conditions of the Antarctic winter. To withstand this harsh environment and conserve
energy, emperor penguins have developed striking morphological, physiological and behavioral
adaptations.

The emperor penguin is the largest living penguin species [1], which together with
its compact shape, short extremities and low thermal conductance (1.3 W m−2 ◦C−1; [2])
contributes to minimize heat loss [3]. As the emperor penguins have no nest for breeding and no
individual territory, they can form dense clusters of thousands of individuals, so-called huddles,
which provide them with an effective protection against cold temperatures and wind [4]. In a
huddle, the body surface temperature of the penguins can rise within less than 2 h to 37 ◦C [5].
Huddling occurs most frequently during breeding in the midst of winter. Contrary to other
penguin species, only male emperors incubate their single egg, by covering it in an abdominal
pouch above their feet [1]. The breeding penguins can therefore perform small, careful steps [6].

The dynamics of huddling has previously been studied by analyzing the temperature and
light intensity pattern recorded with sensors attached to individual penguins [5]. However, for
ethical and economic reasons, this approach can only be applied to a small number of individuals
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within the huddle. To investigate the dynamics of a huddle as a whole, a recent study used time-
lapse video recordings and reported that small density waves travel through the huddle at regular
time intervals of approximately 35–55 s [7]. Gradually, this leads to large-scale reorganization
and movement of the entire huddle. However, the mechanism by which these density waves
travel through the huddle, and how they are triggered, is currently unknown. A recent model in
which the reorganization of the huddle structure is assumed to depend on the wind exposure
of the individual penguins predicts that the huddle position gradually moves leewards [8].
According to this model, the huddle movements solely originate from penguins exposed to
wind at the huddle boundary, whereas the penguins within a huddle remain stationary, which is
in conflict with the observations [7].

In this study, we address two questions: what are the rules and the mechanisms that govern
the motion of individual penguins within a densely packed huddle during a traveling wave?
And how are the traveling waves triggered? To answer these questions, we developed a simple
but biologically plausible model, based on a coupled system of differential equations for the
positions and velocities of the individuals. In this model, we consider that the movement in a
huddle does not arise at some higher organizational or hierarchical level, but is governed only by
the interactions between neighboring penguins [9]. We further assume that all of the penguins
are equal, that is, we do not impose a social or hierarchical structure to the huddle. Our approach
therefore resembles other many-particle models used to describe collective behavior [10–12] in
flocks of birds [13–15], schools of fish [16, 17] or traffic jams [18, 19].

2. Materials and methods

To study the positional reorganization processes in a penguin huddle, we observed two different
emperor penguin colonies at Pointe Géologie near the French research base Dumont d’Urville,
and at Atka Bay near the German research station Neumayer III.

Recordings at the Atka Bay colony were made from an elevated (12 m), distant (115 m)
position, using a Canon D400 camera with a 300 mm lens. High-resolution time lapse images
were recorded every 1.3 s for a total of 4 h and analyzed off-line to detect and track penguin
positions (appendix B and [7]). The air temperatures during the recordings (August 2008) varied
from −33 to −43 ◦C, with wind speeds around 14 m s−1.

The recordings at Pointe Géologie were made in June and July 2005. The video recordings
were stored on miniDV tapes with a spatial resolution of 720 × 576 pixel at 25 frames s−1.
These recordings were of insufficient resolution for tracking of single penguins, and thus were
analyzed using optical flow velocimetry from images that were 5 s apart. Each image was
computed as the median of ten consecutive frames (0.4 s) to reduce the image noise and the
digitization errors. The optical flow field was computed using a combined Lucas–Kanade and
Horn–Schmuck algorithm [20–22].

3. Model

The spontaneous formation of regular particle clusters is a well-known phenomenon in many-
particle systems. For example, spherical colloidal particles with Lennard-Jones-like interaction
potentials, characterized by attractive forces at large distances and steric repulsion forces at
small distances, can relax into a low-energy configuration in the form of a densely packed
cluster with a triangular lattice structure [23]. Systems of non-spherical particles, possibly
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combined with more complicated interaction potentials, such as dipole–dipole interactions, can
form clusters where not only the particle centers are arranged periodically but also the axes of
the particles are aligned [24]. Such systems may be used as simple models for the formation of
clusters in more complex systems, such as huddles of emperor penguins.

In the case of colloidal or other inert systems, the particles are passively pulled along the
vector sum of all of the interaction forces exerted by their neighbors, including thermal forces
from the solvent. However, animals differ from these inert many-particle systems in that they
are self-driven. They actively perceive the positions of their neighbors, process this information
and then activate their locomotory system to move into an appropriate direction. Therefore,
the movements of self-driven agents are more complex than those of inert particles. Moreover,
since the animals use internal energy reservoirs to generate the locomotive forces, describing
the motion of the animals as a many-particle system with suitably chosen interaction potentials
would violate the energy conservation law [12].

Self-driven agent models have been successfully applied to understand human traffic
dynamics [19]. A key concept in traffic models is the so-called desired velocity vdes

i of each
agent i , which can depend in an arbitrary way on the internal state of i and on the positions and
velocities of its neighbors [18]:

vdes
i = f (statei , neighborsi). (1)

The actual velocity vi(t) of an agent does not immediately follow the desired velocity vdes
i ,

but converges toward it with a characteristic relaxation time constant τ . This time lag accounts
for the information processing time of the agent, the finite response times of its locomotory
systems and the inertia effects. It is essential for the formation of stop-and-go waves in traffic
jams [19] and, as we will demonstrate below, also for traveling waves in penguin huddles.

3.1. Wave model

To model the penguins as self-driven agents, we have adopted and modified the above equations
of motion. We assume as a starting condition a triangular lattice structure for the penguin
positions. If they are in this ideal, densely packed configuration, no spontaneous movements
take place, except when a penguin triggers a wave. Furthermore, we assume that all of the
penguins are oriented at all times in the same direction (x) and never rotate. Although in the
video recordings curved or circular huddle structures accompanied with correlated rotations of
individual penguins were observed, the minimal model presented here only considers the linear
wave motions in the x-direction without rotations. Consequently, we consider only the velocities
in the x-direction and leave the y-positions of the penguins constant.

This simplification allows for a direct application of the one-dimensional equation of
motion used in the traffic systems [18], which describes the adjustment of the current (x-)
velocity vi(t) to the desired velocity vdes

i of an agent i with relaxation time τ :

d

dt
vi(t) =

vdes
i − vi(t)

τ
. (2)

Here, the desired velocity can assume one of two possible values. For a penguin i in a static
surrounding, vdes

i = 0. For a penguin participating in a wave motion, vdes
i = vstep. The transition
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from vdes
i = 0 to vstep is triggered when the desired position of the penguin xdes

i lies more than a
threshold distance dth in front of the current position xi(t):

vdes
i = vstep2(xdes

i − (xi + dth)). (3)

Here, 2(x) is the Heaviside step function, and vstep as well as dth are the free model parameters.
For defining xdes

i , we assume that there exists an ideal distance d0 between neighboring penguins.
In a perturbed configuration, the distances di j to the neighbors j cannot all be d0. Thus, the
desired position xdes

i is the position with the minimal overall deviation from d0, i.e. at the
minimum of

∑
j(di j − d0)

2. Unlike the traffic systems where only the car in front matters, in the
case of the penguins, all of the six direct neighbors (numerically determined by the Delaunay
triangulation [25]) are taken into account, except at the borders of the huddle, where the numbers
of direct neighbors can be smaller (see appendix C for details).

The ideal distance d0 between two penguins i and j can be expressed as the sum of two
radii d i j

0 = ri + r j , which describe the desired free space of each animal individually. Note that
the radius ri need not correspond to the physical radius of the animal. Generally, we assign the
same radius to every penguin, however, we also explore a distribution of penguin radii with a
Gaussian distribution centered around dlattice/2 and a standard deviation σ of 0.1 dlattice, which
leads to an imperfect triangular structure.

The configuration of the huddle remains unchanged unless the triangular structure of the
huddle becomes locally disturbed by a supercritical amount. Any penguin within the huddle can
cause such a disturbance by performing a step forward, i.e. setting its desired velocity vdes

i to vstep

for a duration t0. We assume a constant rate Rtr for such triggering events for any penguin, so that
the triggering events are a Poisson point process with an average waiting time Ttr = 1/(N Rtr),
with N equal to the number of individuals of the huddle.

Thus, the parameters of the model are τ , dth, vstep, d0, t0, Rtr and N . However, the number of
parameters can be reduced. The relaxation time τ is chosen to be τ =

dth
vstep

, so that a decelerating

penguin stops at xdes. Slight deviations from this ideal relaxation time τ lead to no fundamental
change of the system dynamics but only to a small constant distortion of the huddles structure.
Furthermore, the duration of a step t0 as well as the lattice distance d0 can be set to unity. As
we will demonstrate below, the huddle size N has no effect on the wave speed and the overall
dynamical properties of the system. Moreover, variation of the trigger rate Rtr does not show
any qualitatively new effects as long as 1/Rtr for an individual penguin is larger than the time t0

(at smaller rates the huddle would be in constant motion). Therefore, only dth and vstep remain
as effective parameters of the model.

3.2. Dynamical properties of the system

Any penguin within the huddle occasionally performs a step. This locally disturbs the triangular
configuration of the huddle and triggers each of the neighboring penguins to also perform—after
a small time-delay—a single step (figure 1). This delay depends on the actual distances between
the penguins, the threshold distance and the speed of the movements. The resulting cascade of
the reorganizations spreads out from the initiating penguin as a wave with a fixed speed and
a rectangular-shaped front (figure 1(d)). Because all of the motions are fueled by the internal
energy reservoirs of the individual penguins, no attenuation of the wave speed and the amplitude
occurs. After the wave has traveled through the whole huddle, the conformation of the huddle is
the same as before the wave, but the whole huddle has now moved one step forward. This is in
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Figure 1. (a) Velocity of four neighboring penguins during a step. The green
dashed line indicates the movement of the triggering penguin. The velocity
relaxes exponentially to the desired value and relaxes back to zero after time
t0. When the penguin has walked a distance dth, the front penguin (blue line)
and the rear penguin (red dashed line) are triggered and perform the same step
profile. These penguins in turn trigger the penguins standing left and right (black
dash-dotted line) of the triggering penguin. As the step profile is the same for
all of the penguins, the wave can travel without attenuation through the whole
huddle. (b) Schematic representation of interactions. In the traffic models, only
the gap to the car in front determines the ideal position. In the huddling model,
the penguins in front can ‘pull’ and the penguins behind can ‘push’. (c) A wave
originates from the triggering penguin and spreads through the whole huddle
with a rectangular shaped front. Color from blue to red corresponds to velocity
(see movie 2, available from stacks.iop.org/NJP/15/125022/mmedia).

qualitative agreement with the video recordings [7], where a wave leads to no obvious distortion
in the huddle conformation but moves the entire huddle forward. Both the video recordings and
the simulations display intermittent dynamics, where the resting phases are interrupted by short
periods of movements (figures 2(a) and (b)). It is not known at present, however, what causes
an individual penguin to initiate a wave, or what keeps the penguins in the huddle to remain
motionless for more than 30 s in between periods of movements.

We next explore the behavior in the huddle when a traveling wave was triggered
simultaneously or in close succession at two distant sites. As the frequency 1/T = N Rtr of
the waves increases linearly with huddle size N , the resulting global velocity of the huddle
could be naively expected to also grow linearly with the huddle size if each triggering event
would cause the huddle to advance by one step. For larger huddles, the intermittent behavior

New Journal of Physics 15 (2013) 125022 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/125022/mmedia
http://www.njp.org/


7

0 10 20 30 40 50
time (s)

20

40

60

80

100

120

po
si

tio
n

(c
m

)

(a)

0 2 4 6 8
time in t0

1

2

3

4

5

6

7

po
si

tio
n

in
d
0

(b)
(c)

(d)

Figure 2. Comparison between the experiment and the simulation. (a) Penguin
trajectories analyzed from the high-resolution images (Zitterbart et al [7]). The
wave fronts (black lines) are running in different directions (positive or negative
slope). (b) Trajectories of penguins in the simulation. (c) The snapshot of the
video used for the extraction of the trajectories in (a) (see also movies 1 and
6 available from stacks.iop.org/NJP/15/125022/mmedia) taken from Zitterbart
et al [7]). (d) Visualization of a huddle in the simulation (see also movie 5
available from stacks.iop.org/NJP/15/125022/mmedia).

would eventually vanish and the penguins would be in constant motion, a feature not observed
in the video recordings [7] or in our simulations. Instead, we observe in our model that the fronts
of two simultaneous waves do not pass through each other but merge. After the merged wave
has traveled through the entire huddle, each individual penguin has performed only a single
step, despite multiple overlapping triggering events. This interesting emergent effect is possible
because wave propagation in a huddle is a nonlinear phenomenon so that the superposition
principle (mutual cancelation or amplification of two waves) does not hold.

3.3. Wave speed

The wave speed through the huddle can be derived analytically (see appendix A) as the distance
between two penguins, divided by the time t (dth) a penguin needs to move the threshold distance
(figure 3). Hence, the wave speed depends only on the relative threshold distance dth/d0 and
the maximum velocity vstep of a single penguin. Because the penguins face their nearest front
neighbors at a 30◦ angle, the distance traveled during the time t (dth) is d0 cos(30◦), and the ratio
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Figure 3. Comparison of the propagation speed of the traveling wave from the
analytical solution (green line) and the numerical simulation (green circles). The
wave speed depends on the threshold distance for triggering the wave. For the
smaller thresholds, the wave travels faster. The gray shaded areas correspond to
the range of the measured values from the video recordings for the relative wave
speed and the relative threshold distance.

of the wave speed to the maximum velocity is

vwave

vstep
=

d0

dth
·

cos(30◦)

W0(−e−2) + 2
, (4)

W0 is the Lambert W -function to take the acceleration of the forward step into account (see
appendix A). Note that the acceleration and the threshold distance are not independent but
are coupled, as explained above. The maximum velocity vstep, the wave speed vwave and the
distance between the penguins d0 can be experimentally obtained (figure 2(a)), and from these
values the threshold distance can be calculated according to equation (4). From the video
recordings published in [7], we estimate a wave speed of around 12 cm s−1, a maximum velocity
during the steps of 1–2 cm s−1 and a distance d0 of 34 cm. From these numbers we estimate
a threshold distance dth of around 2 cm. Independently, a rough estimate of dth can also be
directly obtained from the penguin trajectories as the amplitude of the distance fluctuations
between two neighboring penguins during a step (see appendix B). From this, we find a value
of dth = 1.84 ± 0.99 cm, which is similar to the value calculated from equation (4). Interestingly,
this distance is comparable to twice the thickness of the compressive feather layer of around
1.2 cm [5]. This suggests that the penguins touch each other only slightly when standing in a
huddle, without compressing the feather layer so as to maximize the huddle density without
compromising their own insulation. More importantly, the analytical and the numerical results
for the wave speed as a function of the threshold distance are nearly identical (figure 3).

4. Features of the model

The traveling waves have been reported to have three main effects: global motion of the huddle,
increasing the density of the huddle and allowing separate huddles to merge [7]. In the following,
we explore whether our model also shows these features.
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is always a perfectly ordered huddle, but with different random shifts in the x-
direction. From red to blue, the magnitude of the random shifts is increased.
(b) Visualization of the starting conditions with different degrees of order
(standard deviations of 0.01, 0.08, 0.16 and 0.25) (see movie 3, available from
stacks.iop.org/NJP/15/125022/mmedia).

4.1. Maximizing density

High density requires a high degree of order in the huddle, ideally a strictly triangular lattice
structure. Here, we test numerically how the huddle structure recovers from a disordered
configuration. We distort a perfect triangular lattice with a lattice constant of d0 by randomly
moving the individual penguins by a Gaussian distributed distance 1d in the x-direction, which
is the direction the penguins are facing. We find that the disorder in the huddle, expressed as
the standard deviation σ = stdev(di j), disappears quickly within t < 2t0, where t0 is the typical
duration of a single step. This healing or annealing process takes place without the initiation
of a traveling wave, and is driven only by the lattice disorder that causes the penguins to move
according to equation (3). The residual degree of the disorder remains below the threshold
distance (figure 4). Imperfections of σ > 0.25, however, do not heal spontaneously in our
simulation for two reasons. Firstly, the rearrangements are so large that before some of the
penguins have had a chance to find their ideal resting position, they have collided with another
penguin and thus have triggered another wave of rearrangements. Secondly, the ideal positions,
determined from the distance to the surrounding penguins, move at the same time and with a
similar speed as the movement of each individual penguin. Thus, the huddle never comes to
a rest. In real penguin huddles, we occasionally observe a complete break-up of the ordered
huddle structure. However, it is at present not clear if this phenomenon is triggered by the large
and ongoing movements of one or several penguins in the huddle.

4.2. Merging of the huddles

In order to investigate how the model behaves when huddles merge, we start with two separate
huddles some distance apart, both facing the same direction. If the waves are only initiated in
the rear huddle, it approaches the huddle in front with every passing wave. Eventually, the rear

New Journal of Physics 15 (2013) 125022 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/125022/mmedia
http://www.njp.org/


10

0 5 10 15 20 25
position in d0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

tim
es

lic
es

in
0.
3
t 0

Figure 5. Kymograph showing the merging of the two huddles. Initially (top
row), the two huddles are separated by a horizontal gap. Over time (top
to bottom), the left huddle approaches the front huddle by a sequence of
steps. Eventually (bottom row), the two huddles merge, and the waves travel
through the merged huddle (see movie 4, available from stacks.iop.org/NJP/15/
125022/mmedia).

huddle has covered the distance to the huddle in front, and as the two huddles touch, they merge
seamlessly. All of the subsequent waves now pass through the united huddle (figure 5).

4.3. Initiation of the waves

In the simulations, the penguins move only forward in the x-direction. This is similar to the
situation in a traffic jam. Indeed, the reorganization waves in the penguin huddles closely
resemble the stop-and-go waves and the intermittent behavior in jammed traffic. There are some
fundamental differences, however: while in traffic jams the waves always start at the front of
the queue and travel upstream from there, the waves in a penguin huddle can travel in both
directions and also spread sideways in a rectangular pattern. Moreover, the waves in a penguin
huddle can be triggered from any penguin regardless of its position. In particular, there is no
need for a leading ‘pacemaker’ penguin in our model.

To test whether these results recapitulate the experimental findings, we perform an
optical flow analysis of the video recordings of the penguin huddles. For this, we select a
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Figure 6. Optical flow analysis of the traveling wave dynamics. (a) Circular
huddle with counter-clockwise (white arrow) rotational movements (copyright
M Beaulieu and A Ancel, CNRS/IPEV). (b) Frame of the optical flow velocities
in the huddle in (a). The flow velocity magnitude is column-wise averaged in
the y-direction (orange arrow) over the lower half of the huddle (white dashed
rectangle). The resulting line profile of the flow velocities along the x-direction
(indicated by the red line) is plotted in the kymographs below. (c) The kymograph
of the huddle movements during a 7 min period. White lines indicate wave fronts.
Enlarged areas show (1) a decaying wave, (2) a non-decaying wave and (3) a
merging event of two waves triggered at different positions. (d) Kymograph of
the huddle movements in the simulation.

circular-shaped huddle in which the penguins face and move in the counter-clockwise
direction around a stationary center (figure 6(a)). In this case, the lattice structure exhibits
dislocation boundaries with a spiral pattern around the center, however over a shorter range, an
approximately triangular order prevails. The optical flow is averaged in the y-direction (column-
wise) over the lower half of the huddle to collapse the flow information onto a line (in the
x-direction). The flow in the x-direction is then plotted versus time in a kymograph representa-
tion (figure 6(c)). Waves traveling from the left to the right side of the lower half of the huddle
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(in the direction of the penguin movements) are visible in the kymograph as lines with a negative
slope. In the analogy, waves traveling from the right to the left against the direction of the
penguin movements are visible in the kymograph as lines with a positive slope.

The occurrence of the positive and the negative slopes shows that the waves can travel
forward and backwards through the huddle (figure 6(c)). Note that due to the larger lattice
disorder in the case of a round huddle, the traveling waves may not always spread through the
entire huddle but can die out over shorter distances (figure 6(c)1). The optical flow analysis
also reveals that the waves start at different points in the huddle (corresponding to different y-
positions in the kymograph). This leads to the conclusion that indeed the traveling waves can
be triggered from different positions and therefore by different penguins in the huddle, which
confirms the prediction of the model.

5. Conclusion

We present a simple model for the dynamical reorganization of emperor penguin huddles,
based on an extension of the established one-dimensional models for traffic systems. Our model
exhibits similarities with jammed traffic systems such as the stop-and-go waves and intermittent
behavior, but also differences, such as that the waves can travel in all directions through a
penguin huddle, which is confirmed here from the video recordings of the huddling penguins.

The model considers only the interactions between neighboring penguins, whereby a
penguin moves to achieve or restore an optimal distance to the neighbors if this distance exceeds
or falls below a threshold. Because each penguin is caged by surrounding penguins, a movement
necessarily causes a propagation of the disturbances from the distance optimum and therefore
leads to a traveling wave. The speed of the traveling wave depends on the optimal distance and
the walking speed of the individual penguin, which both can be measured, and on the threshold
distance, which can be inferred from the model. From our data, we estimate a threshold distance
of 2 cm. We independently confirm this value from the fluctuations in the distances between
the neighboring penguins during a traveling wave. Furthermore, the model confirms that the
traveling waves help to achieve an optimally dense huddle structure, and describes how huddles
can merge. More importantly, the model predicts that a traveling wave can be triggered from
any penguin, regardless of its position in the huddle. This prediction is confirmed by an optical
flow analysis of the video recordings from the huddling emperor penguins.
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Appendix A. Analytical expression for the wave speed

The wave speed arises as a combination of the finite physical speed of the penguins during
a forward step, and the instantaneous jump of the wave to the adjacent penguins after a
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Figure A.1. Schematic representation of the configurations of the penguins
during wave propagation. (a) Starting configuration and (b) configuration after
time t (b) at which the desired position (black cross) of the center penguin (red
circle) has been moved by a threshold distance dth. As a consequence, the wave
front jumps by a distance a =

√
3

2 d0.

threshold distance has been exceeded. This is in analogy to the saltatory propagation of the
action potentials along the myelinated axons from one node of the Ranvier to the next node. In
figure A.1 on the left side, a configuration of an undisturbed hexagonal packing is depicted, with
a wave arriving from the left that has reached the rear penguins (cyan). These penguins now start
moving to the right by a distance b, at which point they have pushed the desired position of the
center penguin (red) beyond a critical distance dth. This situation is depicted in figure A.1 right.
At this instance, the wave front jumps to the center penguin, which in turn starts moving to the
right, and so forth. The effective wave speed is thus the time t (b) needed for the rear penguins
(cyan) to move to the distance b, divided by the total distance a =

√
3

2 d0 that the wave front has
traveled during that time. Note that the rear penguins (cyan) continue to move beyond position
b, but this has no further effect on the wave front.

To calculate the distance b, we first compute the positional error E(xi) as the sum of the
squared neighbor distance errors

E(Exi) :=

∑
j∈N

(|Exi − Ex j | − d0)
2

 . (A.1)

The desired position is the position of the minimum of E(xi)

dE(Exi)

dExi

∣∣∣∣
Exi =Exi,des

= E0. (A.2)

We consider the origin of the coordinate system to be at the position of the central penguin.
For the situation depicted in figure A.1(b) where the desired position of the central penguin has
reached the threshold distance dth, the sum of the errors for the central penguin can be calculated
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from the positions of its six neighbors according to

E(Exi,des = (dth, 0)) = 2

√
(−a + b − dth)2 +

(
d0

2

)2

− d0

2

+2

√
(a − dth)2 +

(
d0

2

)2

− d0

2

+ 2

(√
d2

th + d2 − d0

)2

. (A.3)

Because in figure A.1(b) the penguin positions are symmetrical in y, we now can minimize this
sum with respect to b to find the traveling distance b where the rear penguins have triggered the
central penguin. The calculation is straightforward, and we find that btrigger = dth.

To calculate the time the rear penguins need to walk this distance of b, the differential
equation for v

v̇ =
vdes(x) − v

τ
(A.4)

is integrated for the situation of a penguin starting at rest and accelerating to vdes = vstep.

v(t) = −vstepe−t/τ + vstep with v(0) = 0, (A.5)

x(t) = vstept + τvstepe−t/τ
− τvstep with x(0) = 0. (A.6)

Solving this equation for t gives

t (x) = τW
(
−e−x/(vstepτ)−1

)
+

x

vstep
+ τ, (A.7)

where W is the Lambert W -function.
The function t (x) gives the time for an accelerating penguin to walk the distance x . As

shown above, to trigger the next step, the rear penguins have to walk the distance b = dth. For
τ = dth/vstep, the time it takes the penguin to walk this distance is given by

t (dth) = dth(W (−e−2) + 2)/vstep. (A.8)

When the rear penguins have triggered a step of the next penguin standing at a distance of
a =

√
3

2 d0 in front of it, the wave has traveled exactly this distance. The speed of the wave is

vwave =
d0

√
3

2

t (dth)
, (A.9)

vwave =
d0

√
3

2

dth(W (−e−2) + 2)/vstep
, (A.10)

vwave

vstep
=

d0

dth

√
3

2

W (−e−2) + 2
, where W (−e−2) ≈ −0.158 594. (A.11)
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Figure B.1. (a) Snapshot of a video frame. The markers indicate the positions
of the neighboring penguin pairs (connected by white dotted lines). The front
penguin of a pair is labeled in red and the rear penguin in blue. (b) The fitted
trajectory (dashed lines, fit according to equation (B.1)) of a pair of penguins.
The circles represent the measured positions. From the fluctuations in the
fitted distances between the neighboring penguins during a wave, the threshold
distance dth can be estimated.

Appendix B. Estimation of the threshold distance

To estimate the threshold distance, the video recordings of a densely packed region of the
huddle [7] were analyzed. A section where a wave traveled backwards through the huddle
was investigated. Neighboring pairs of penguins, one standing directly behind the other and
both facing to the right, where chosen so that the x-component of the trajectory corresponds to
the total distance traveled. For tracking, the upper corner of the white head spot was followed
manually. The trajectories where then described with the equation

x(t) =


a, t < ts,

m(t − ts) + a, ts < t < te,

b, t > te.

(B.1)

The parameters a, b, ts and te were fitted to the trajectories; m was chosen as m =
b−a
te−ts

to describe
a linear transition from the starting point of the step to the endpoint (figure B.1(b)).

The distance between the neighboring penguins usually increases during a step because of
the time shift in the initiation of the movement. This time shift arises from the reaction time and
the finite speed that the front penguin travels to cover the threshold distance dth.

From the fitted pairs of the trajectories xi(t) and x j(t), the maximum distance max(x j –xi )
between two neighboring penguins, normalized by the starting distance, was calculated. For an
infinitely short reaction time, the threshold distance dth can then be calculated as

dth = 1 −
x j(0) − xi(0)

max(x j − xi)
. (B.2)

As the video material has a poor time resolution of 0.8 fps and the position of the tracked spot
also can be determined only with the pixel resolution, the obtained value for dth = 0.054 ± 0.029
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(a) (b)

Figure C.1. (a) Neighbor assignments obtained by simple Delaunay
triangulation. In addition to the desired assignments (green), some far away
penguins are also connected (red). (b) Drawing a circle around every penguin
and inserting points (crosses) at the intersections eliminates the undesired
connections.

(mean ± std) pixels, corresponding to 1.84 ± 0.99 cm, should be regarded only as a rough
estimate for this parameter.

Appendix C. Assigning neighbors

As discussed above in section 3.1, the choice of neighbors is important for calculating the
desired position xdes. In the model, each penguin is assigned six direct neighbors as determined
by the Delaunay triangulation [25]. However, care has to be taken with the penguins at the
border of the huddle. Here, a simple Delaunay triangulation would link the penguins that are
in no ‘direct’ neighborhood with each other (figure C.1(a)). Instead, we perform a Delaunay
triangulation after including additional points (virtual penguins) outside the border of the
huddle. To construct these points, a circle with radius 2ri is drawn around every border penguins
i , and the points where two such circles intersect are selected. If a point falls within the desired
region of an existing penguin, i.e. it is less than r j away from a penguin j , it is rejected
(figure C.1(b)). As the huddles can merge and thus the boundary of a huddle can change, these
additional points are recalculated for every frame.
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[10] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Novel type of phase transition in a system of
self-driven particles Phys. Rev. Lett. 75 1226–9

[11] Couzin I D 2003 Self-organization and collective behavior in vertebrates Advances in the Study of Behavior
vol 32 (Amsterdam: Elsevier) pp 1–75

[12] Vicsek T and Zafeiris A 2012 Collective motion Phys. Rep. 517 71–140
[13] Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V and Orlandi A 2008

Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence
from a field study Proc. Natl Acad. Sci. USA 105 1232–7

[14] Bhattacharya K and Vicsek T 2010 Collective decision making in cohesive flocks New J. Phys. 12 093019
[15] Bode N W F, Franks D W and Wood A J 2011 Limited interactions in flocks: relating model simulations to

empirical data J. R. Soc. Interface 8 301–4
[16] Becco C, Vandewalle N, Delcourt J and Poncin P 2006 Experimental evidences of a structural and dynamical

transition in fish school Phys. A: Stat. Mech. Appl. 367 487–93
[17] Katz Y, Tunstrøm K R, Ioannou C C, Huepe C and Couzin I D 2011 Inferring the structure and dynamics of

interactions in schooling fish Proc. Natl. Acad. Sci. USA 108 18720–5
[18] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Dynamical model of traffic congestion

and numerical simulation Phys. Rev. E 51 1035–42
[19] Helbing D 2001 Traffic and related self-driven many-particle systems Rev. Mod. Phys. 73 1067–141
[20] Liu C 2009 Beyond pixels: exploring new representations and applications for motion analysis PhD Thesis

Massachusetts Institute of Technology
[21] Brox T, Papenberg N and Weickert J 2004 High accuracy optical flow estimation based on a theory for

warping Eur. Conf. Comput. Vision 4 25–36
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