On suppose que la masse (en kg), X d'un bébé à la naissance suit la loi normale de paramètre m = 3,35 et $\sigma^2 = 0,1089$

1°) Déterminer la probabilité qu'un bébé pèse à la naissance entre 3 kg et 4 kg (arrondie au millième) 2°) a) Déterminer la probabilité qu'un bébé pèse à la naissance moins de 3 kg (arrondie au millième) 2°) b) Déterminer la probabilité qu'un bébé pèse à la naissance plus de 4 kg (arrondie au millième) 3°) Déterminer la masse m_1 tel que la probabilité qu'un bébé à la naissance pèse moins de m_1 est de 0,95.

1°) Probabilité de l'événement "3 < X < 4"

Menu OPTN et choix F5 (STAT) puis F3 DIST et enfin F1 (NORM) Sélectionner Ncd puis renseigner : (valeur inférieure, valeur supérieure,	NormCD(3,4,√0.1089,3Þ 0.8311289612 □
écart type, moyenne) Séquence : 3 , 4 , <mark>(0,1089</mark> , 3.35) puis EXE	NPd NCd IWW
<u>Syntaxe de l'instruction :</u> NormCD(Valeur inf, Valeur sup, écart type , moyenne) Attention, le paramètre utilisé en terminale est la variance et non pas l'écart type.	
La probabilité qu'un bébé pèse à la naissance entre 3 kg et 4 kg est de 0,831.	

2°) Probabilité des événements "X<3" et "X>4"

Pour calculer $P(X < 3)$ on peut saisir comme borne inférieure une valeur très petite par exemple -10 ⁹⁹ .	NormCD ⁽ -10 ⁹⁹ ,3,√ <u>0.10</u> 0.1444344836
Utiliser l'instruction : NormalCD(-10^99, Valeur sup, écart type, moyenne)	
Menu OPTN et choix F5 (STAT) puis F3 DIST et enfin F1 (NORM)	NPd Ned InvN
Sélectionner Ncd puis séquence : -10 ^ 99 , 3 , √0,1089 , 3.35) puis EXE	
La probabilité qu'un bébé pèse à la naissance moins de 3 kg est 0,144.	
Pour calculer $P(X > 4)$ on peut saisir comme borne supérieure une valeur très grande par exemple 10^{99} .	
Utiliser l'instruction : NormalCD (Valeur inf, 10^99, écart type, moyenne)	NormCD(4,1099, 0,108)
Menu OPTN et choix F5 (STAT) puis F3 DIST et enfin F1 (NORM)	0
Sélectionner Ncd <i>puis séquence</i> : 4 , 10 ^ 99 , √0,1089 , 3.35) puis ENTER	NPd Nod InvN
La probabilité qu'un bébé pèse à la naissance plus de 4 kg est 0,024.	

<u>Déterminer m_1 tel que P($X < m_1$) = 0,95</u>

Utiliser l'instruction : InvN(probabilité, écart type, moyenne)	InvNormCD(0.95, 0.100
Menu DISTR (touches 2ND VARS)	0 3.892801697
Sélectionner InvN	
puis séquence : 0,95 ,	NPd NCd InvN
Il y a 95% de chance qu'un bébé pèse moins de 3,893 kg à la naissance.	

⇒ Compléments

Obtenir la représentation graphique de la fonction de densité de X

Touche Menu icone Graphe puis saisir la fonction de densité en Y1 comme ci-contre	Fonct graph : <u>Y=</u> Y1BNormPD(X, <u>0.1</u> [—]
L'instruction NormPD s'obtient avec le menu OPTN puis choix F6 et F3 (STAT) puis F1 DIST , F1 (NORM) et enfin F1 <i>puis séquence :</i> X, √0,1089 , 3.35) puis EXE	V4: [] V5: [] V6: [] (Sel Dely TWPE STVU 3MEM (DRAW)
Instruction V-WINDOW Régler les paramètres comme sur l'écran ci-contre Xmin = m-4 σ soit 3.35-4× $\sqrt{0,1089} \simeq 2.03$ Xmax = m+4 σ soit 3.35+4× $\sqrt{0,1089} \simeq 4.67$	Fen-U Xmin :2.03 max :4.67 scale:1 dot :0.02095238 Ymin :0 max :10 INIT (TRIGISTO STO RCL)
Remarque : On a choisi ces bornes car l'intervalle [m-4 σ ; m+4 σ] contient la quasi-totalité des valeurs (plus de 99,99%).	
Tracer la courbe de la densité de probabilité avec le menu ZOOM (choix F2), sélectionner AUTO	

Probabilité de l'événement "3 < X < 4" en utilisant la fonction de densité et les intégrales

Instruction G-Solv (touches SHIFT F5) puis choix F6 ; F3 pour l'instruction $\int dx$ Saisir la borne Inférieure, 3 puis EXE et la borne supérieure, 4 puis EXE .	Y1=NormPD(X, (J0.1089) Définir limite inférieure X:3 Lower=3 Lower=3 Lower=4 /dx=0.8911289512
On retrouve la probabilité calculée auparavant.	

Commentaires

probabilités en travaillant dans le menu Statistique : choix F5 (DIST) puis F1 (NORM) Par exemple pour calculer P(3 < X < 4) choisir Ncd (F2) et compléter la boite de dialogue comme ci-contre :

Pour obtenir les valeurs de P(X<3) et P(X>4), on a calculé P($-10^{99} < X < 3$) et P(4 < X < 10^{99}), l'erreur commise étant négligeable. A la place de -10^{99} (respectivement 10^{99}), on peut mettre la valeur $m - 4\sigma$ (respectivement $m + 4\sigma$).