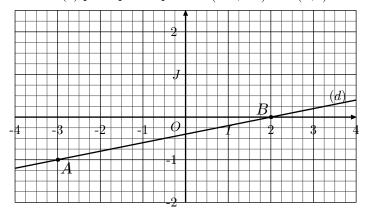
Exercice 1

Résoudre les systèmes d'équations suivants:

a.
$$\begin{cases} x - 3y = 8 \\ 4x + y = -7 \end{cases}$$
 b.
$$\begin{cases} 2x + 3y = 10 \\ 5x + 10y = 20 \end{cases}$$

b.
$$\begin{cases} 2x + 3y = 10 \\ 5x + 10y = 20 \end{cases}$$

Exercice 2*


Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les quatre points A, B, C, D de coordonnées:

$$A(-2;1)$$
 ; $B(4;3)$; $C(3;-4)$; $D(-2;-2)$

- a. Déterminer une équation cartésienne de la droite (AC).
 - (b.) Déterminer une équation cartésienne de la droite (BD).
- 2. Déterminer les coordonnées du point d'intersection des diagonales du quadrilatère ABCD.

Exercice 3*

On considère le plan muni d'un repère (O; I; J) dans lequel la droite (d) passe par les points A(-3;-1) et B(2;0):

- Déterminer une équation cartésienne de la droite (d).
- On considère la droite (Δ) admettant l'équation (E) pour équation cartésienne: x + 2y - 3 = 0
 - (a.) Donner, sans justification, un point C appartenant à la droite (Δ) et un vecteur directeur \overrightarrow{u} de cette droite.
 - (b.) Effectuer, dans le repère ci-dessous, le tracé de la droite (Δ) .
- 3. Déterminer les coordonnées du point d'intersection des droites (d) et (Δ) .

Exercice 4

Une droite (d) passe par les points A(-2,5;3) et $B\left(\frac{3}{2};1\right)$

Parmi les trois équations cartésiennes, dîtes celle qui correspond à la droite (d):

a.
$$2x + 2y - 1 = 0$$
 b. $-4x - 3y + 9 = 0$

b.
$$-4x - 3y + 9 = 0$$

c.
$$2x + 4y - 7 = 0$$