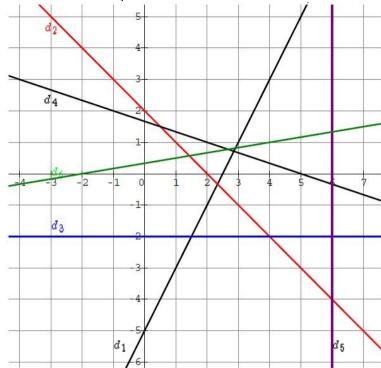
Partie A: Lecture graphique & Tangentes

Exercice 1 Déterminer les équations réduites des 6 droites ci-dessous



Exercice 2 Déterminer dans chaque cas l'équation de la droite (d) passant par A et de pente m: a) A(2;1) et m=2 b) A(3;4) et m=-3

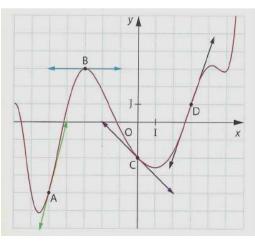
c)
$$A(-1;1)$$
 et $m=\frac{1}{3}$ d) $A(3;-2)$ et $m=0$

d)
$$A(3;-2)$$
 et $m=0$

Exercice 3

On a représenté la courbe d'une fonction f et certaines de ses tangentes

- 1) Donner l'interprétation graphique de f'(3)
- 2) Lire graphiquement f'(-5), f'(3), f'(0) et f'(3)



Exercice 4

On considère la fonction f définie sur setr par $f(x)=x^2-3$

- 1) Construire la courbe de f à l'aide de la calculatrice
- 2) Tracer la tangente à C_f au point A d'abscisse -2

Exercice 5

On considère le tableau de valeurs ci-contre

a	-4	-2	0	2	6
f(a)	2	-1	3,5	5	5
f'(a)	-1	0	1	0,5	-1

- 1) Construire les points et les tangentes d'après ce tableau de valeurs
- 2) Construire une allure possible de C_f

Partie B: Taux d'accroissements

Exercice 1

On pose $f(x)=x^2$ avec $x \in \mathbb{R}$

- 1) Calculer f(5) et f(5+h) puis en déduire $\tau_5 = \frac{f(5+h) f(5)}{h}$
- 2) En déduire la valeur de f'(5)

Exercice 2

Un véhicule décrit un mouvement rectiligne ; la distance parcourue, en mètres en fonction du temps, en secondes est $d(t)=t^2+5t$

1) Calculer
$$\tau_0 = \frac{d(h) - d(0)}{h}$$
 pour $h > 0$

- 2) Déterminer la vitesse instantanée d'(0)
- 3) Déterminer la vitesse instantanée à t=10s

Exercice 3

On pose $f(x)=x^3$ avec $x \in \mathbb{R}$

- 1) Établir la relation $x^3 v^3 = (x v)(x^2 + x + v + v^2)$
- 2) En déduire la factorisation de $(2+h)^3-8$
- 3) Déterminer alors $\tau_2 = \frac{f(2+h) f(2)}{h}$
- 4) En déduire la valeur de f'(2)

Exercice 4

On pose $f(x) = \sqrt{x}$ avec $x \in \mathbb{R}^+$

- 1) Vérifie que pour h>0 , $\tau_1 = \frac{f(1+h)-f(1)}{h} = \frac{1}{\sqrt{1+h+1}}$
- 2) En déduire la valeur de f'(1)

Exercice 5

On pose $f(x) = \frac{1}{x-3}$ avec $x \in \mathbb{R} \setminus \{3\}$

- 1) Montrer que f est dérivable en -2 en calculant τ_{-2}
- 2) Déterminer la valeur de f'(-2)

Exercice 6

On pose $f(x) = \sqrt{x+2}$ avec $x \ge -2$

- 1) Montrer que f est dérivable en 1 en calculant τ_1
- 2) Déterminer la valeur de f'(1)

Partie C : Calculs de dérivées

Exercice 1

Calculer la valeur de f'(a) dans chaque cas :

- a) $f(x)=x^2$ et a=-5 b) $f(x)=x^3$ et a=2
- c) $f(x) = \sqrt{x}$ et a = 4 d) $f(x) = \frac{1}{x}$ et a = 3

Exercice 2

Dans chaque cas tracer la courbe de f (sur la calculatrice) et déterminer l'équation réduite de la tangente à C_f au point A d'abscisse a:

- a) $f(x)=x^2$ et a=2 b) $f(x)=x^2$ et a=-3
- c) $f(x) = \frac{1}{x}$ et a = 3 d) $f(x) = \sqrt{x}$ et a = 4

Exercice 3

Dans chaque cas justifier que f est dérivable en précisant son ensemble de dérivabilité puis calculer f'(x)

- 1) $f(x)=2x^2+3x$ 2) f(x)=2x+1 3) f(x)=-4x+6
- 4) $f(x)=3x^5-2x^2$ 5) $f(x)=2\sqrt{x}+4x$

 - 6) $f(x) = -x^3 + \sqrt{2}x^2 + 4x$ 7) $f(x) = x\sqrt{x}$
- 8) $f(x)=x^2(2x+4)$ 9) f(x)=4x(x-5)

 - 10) $f(x) = x^3(x \sqrt{x})$ 11) $f(x) = \frac{1}{x 3}$
 - 12) $f(x) = \frac{1}{x^2 1}$ 13) $f(x) = \frac{2}{x + 4}$
- 14) $f(x) = \frac{-5}{x^2 + 1}$
- 15) $f(x) = \frac{2x+1}{x+3}$
- 16) $f(x) = \frac{2x^2}{x+3}$ 17) $f(x) = \frac{2x^2+5x+1}{x^2+1}$
- 18) $f(x) = \frac{2\sqrt{x} + 3}{x}$
- 19) $f(x)=(2x+1)^2$
- 20) $f(x)=x^2(x+3)$ 21) $f(x)=\frac{x^4}{4}-3x^2+\frac{x}{5}-3$

Bon courage à tous!