Ex 1: On donne les points A(-5;3), B(-4;1) et C(1:-4) dans un repère orthonormé $(O; \vec{i}, \vec{j})$

- 1) Calculer les coordonnées du milieu K de AB
- 2) Calculer les coordonnées du point *D* telque *ABCD* soit un parallélogramme

Ex 2: Soient les points A(-9;-10), B(2;9), C(5;3) , D(-1;-8) et E(3;0)

- 1) Calculer les coordonnées des vecteurs \overrightarrow{CD} , \overrightarrow{DE}
- 2) Les points C,D,E sont-ils alignés ? Justifier
- 3) Les droites (AB) et (CD) sont-elles parallèles?

Ex 3: Soient les points A(-2;2), B(-3;-3), C(5;1) et D(2;4); E est le milieu du segment [BC]

- 1) Calculer les coordonnées des vecteurs \overrightarrow{AD} et \overrightarrow{BC}
- 2) Les vecteurs \overrightarrow{AD} et \overrightarrow{BC} sont-ils colinéaires ? Que peut-on en déduire ?
- 3) Démontrer que ADEB et ADCE sont des parallélogrammes

Ex 4 : On donnes les lieux géométriques suivants :

$$\begin{split} &L_1 \! = \! \{(x;y) \! \in \! \mathbb{R}^2/y \! = \! \frac{-x}{2} \! + \! 3 \} \\ &L_2 \! = \! \{(x;y) \! \in \! \mathbb{R}^2/x \! + \! 2 \, y \! - \! 1 \! = \! 0 \, \} \\ &L_3 \! = \! \{(x;y) \! \in \! \mathbb{R}^2/x^2 \! + \! y^2 \! = \! 9 \} \\ &L_4 \! = \! \{(x;y) \! \in \! \mathbb{R}^2/-2 \, x \! + \! 3 \, y \! + \! 5 \! = \! 0 \} \\ &L_5 \! = \! \{(x;y) \! \in \! \mathbb{R}^2/x^2 \! - \! y^2 \! = \! 0 \} \end{split}$$

- 1) Déterminer 4 points de chacun de ces 5 Lieux
- 2) Construire ces Lieux géométriques
- 3) Déterminer les éléments caractéristiques de ce lieux géométriques

Ex 5 : (Résolu) On donne les droites suivantes :

Nom	Caractéristiques	
\mathcal{D}_1	passant par $A(1; 2)$ et $B(3; 1)$	
\mathcal{D}_2	passant par A et $C(-1; -2)$	
\mathcal{D}_3	passant par A et $D(-1; 5)$	
\mathcal{D}_4	passant par B et de vecteur directeur \overrightarrow{CD}	
\mathcal{D}_5	passant par D et parallèle à (AC)	
\mathcal{D}_6	passant par C et parallèle à (AB)	
207	passant par A et de vecteur directeur $\vec{t}(1;0)$	

Vérifier les équations réduites ou cartésiennes ci-dessous : Vérifier les équations réduites ou cartésiennes ci-dessous :

une équation cartésienne	l'équation réduite
x+2y=5	$y = -\frac{1}{2}x + \frac{5}{2}$
2x - y = 0	y = 2x
3x + 2y = 7	$y = -\frac{3}{2}x + \frac{7}{2}$
<i>x</i> = 3	pas d'équation réduite
2x - y = -7	y = 2x + 7
x + 2y = -5	$y = -\frac{1}{2}x - \frac{5}{2}$
y-2=0	y = 2

Ex 1: On donne les points A(-5;3), B(-4;1) et C(1;-4) dans un repère orthonormé $(O;\vec{i},\vec{j})$

- 3) Calculer les coordonnées du milieu *K* de | *AB* |
- 4) Calculer les coordonnées du point *D* telque *ABCD* soit un parallélogramme

Ex 2: Soient les points A(-9;-10), B(2;9), C(5;3), D(-1;-8) et E(3;0)

- 1) Calculer les coordonnées des vecteurs \overrightarrow{CD} , \overrightarrow{DE}
- 2) Les points C, D, E sont-ils alignés ? Justifier
- 3) Les droites (AB) et (CD) sont-elles parallèles?

Ex 3: Soient les points A(-2;2), B(-3;-3), C(5;1) et D(2;4); E est le milieu du segment [BC]

- 1) Calculer les coordonnées des vecteurs \overrightarrow{AD} et \overrightarrow{BC}
- 2) Les vecteurs \overrightarrow{AD} et \overrightarrow{BC} sont-ils colinéaires ? Que peut-on en déduire ?
- 3) Démontrer que ADEB et ADCE sont des parallélogrammes

Ex 4 : On donnes les lieux géométriques suivants :

$$L_{1} = \{(x; y) \in \mathbb{R}^{2} / y = \frac{-x}{2} + 3\}$$

$$L_{2} = \{(x; y) \in \mathbb{R}^{2} / x + 2y - 1 = 0\}$$

$$L_{3} = \{(x; y) \in \mathbb{R}^{2} / x^{2} + y^{2} = 9\}$$

$$L_{4} = \{(x; y) \in \mathbb{R}^{2} / -2x + 3y + 5 = 0\}$$

$$L_{5} = \{(x; y) \in \mathbb{R}^{2} / x^{2} - y^{2} = 0\}$$

- 1) Déterminer 4 points de chacun de ces 5 Lieux
- 2) Construire ces Lieux géométriques
- 3) Déterminer les éléments caractéristiques de ce lieux géométriques

Ex 5 : (Résolu) On donne les droites suivantes :

Nom	Caractéristiques	
\mathcal{D}_1	passant par $A(1; 2)$ et $B(3; 1)$	
\mathcal{D}_2	passant par A et $C(-1; -2)$	
\mathcal{D}_3	passant par A et $D(-1; 5)$	
\mathcal{D}_4	passant par B et de vecteur directeur \overrightarrow{CD}	
\mathcal{D}_5	passant par D et parallèle à (AC)	
\mathcal{D}_6	passant par C et parallèle à (AB)	
207	passant par A et de vecteur directeur $\vec{t}(1;0)$	

une équation cartésienne	l'équation réduite
x+2y=5	$y = -\frac{1}{2}x + \frac{5}{2}$
2x - y = 0	y = 2x
3x + 2y = 7	$y = -\frac{3}{2}x + \frac{7}{2}$
x = 3	pas d'équation réduite
2x - y = -7	y = 2x + 7
x + 2y = -5	$y = -\frac{1}{2}x - \frac{5}{2}$
y-2=0	y = 2