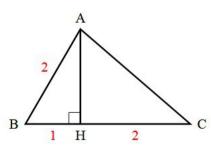
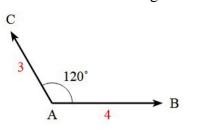
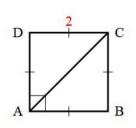

Ex 1: On donne les 5 figures ci-dessous:



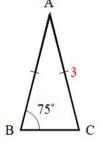
- 1) Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans la **figure 1**
- 2) Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{AB} \cdot \overrightarrow{AD}$, $\overrightarrow{AD} \cdot \overrightarrow{CB}$ et $\overrightarrow{DB} \cdot \overrightarrow{AC}$ dans la **figure 2**
- 3) Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{BA} \cdot \overrightarrow{BC}$ dans la **figure 3**
- 4) Calculer les produits scalaires $\overline{AD} \cdot \overline{DB}$, $\overline{AB} \cdot \overline{DC}$, $\overline{AD} \cdot \overline{AB}$ et $\overline{AB} \cdot \overline{AC}$ dans la **figure 4**
- 5) Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{BA} \cdot \overrightarrow{BC}$ dans la **figure 5**

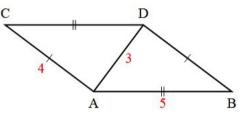
Ex 2 : On donne la figure ci-dessous

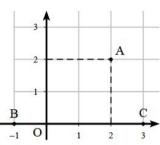

- 1) Calculer les produits scalaires $\overrightarrow{BA} \cdot \overrightarrow{BC}$, $\overrightarrow{CA} \cdot \overrightarrow{CB}$, $\overrightarrow{HB} \cdot \overrightarrow{HC}$
- 2) Déterminer la valeur exacte de l'angle \widehat{ABC} et en déduire AH
- 3) En déduire les valeurs des angles \widehat{BAH} , \widehat{ACB} et \widehat{BAC}



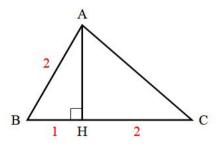
Ex 3: On donne trois points A(4;1), B(0;5) et C(-2;-1)


- 1) Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2) Montrer que $\cos(\widehat{BAC}) = \frac{1}{\sqrt{5}}$ et en déduire la valeur de l'angle \widehat{BAC}


Ex 1: On donne les 5 figures ci-dessous:



TD 2: Le Produit Scalaire dans le Plan



- 1) Calculer le produit scalaire $\overline{AB} \cdot \overline{AC}$ dans la **figure 1**
- 2) Calculer les produits scalaires $\overline{AB} \cdot \overline{AC}$, $\overline{AB} \cdot \overline{AD}$, $\overline{AD} \cdot \overline{CB}$ et $\overline{DB} \cdot \overline{AC}$ dans la **figure 2**
- 3) Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{BA} \cdot \overrightarrow{BC}$ dans la **figure 3**
- 4) Calculer les produits scalaires $\overline{AD} \cdot \overline{DB}$, $\overline{AB} \cdot \overline{DC}$, $\overline{AD} \cdot \overline{AB}$ et $\overline{AB} \cdot \overline{AC}$ dans la **figure 4**
- 5) Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{BA} \cdot \overrightarrow{BC}$ dans la figure 5

Ex 2: On donne la figure ci-dessous

- 1) Calculer les produits scalaires $\overrightarrow{BA} \cdot \overrightarrow{BC}$, $\overrightarrow{CA} \cdot \overrightarrow{CB}$, $\overrightarrow{HB} \cdot \overrightarrow{HC}$
- 2) Déterminer la valeur exacte de l'angle \widehat{ABC} et en déduire AH
- 3) En déduire les valeurs des angles \widehat{BAH} , \widehat{ACB} et \widehat{BAC}

Ex 3: On donne trois points A(4;1), B(0;5) et C(-2;-1)

- 1) Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2) Montrer que $\cos(\widehat{BAC}) = \frac{1}{\sqrt{5}}$ et en déduire la valeur de l'angle \widehat{BAC}