1ère B spé

TD 3 – Limites de Suites

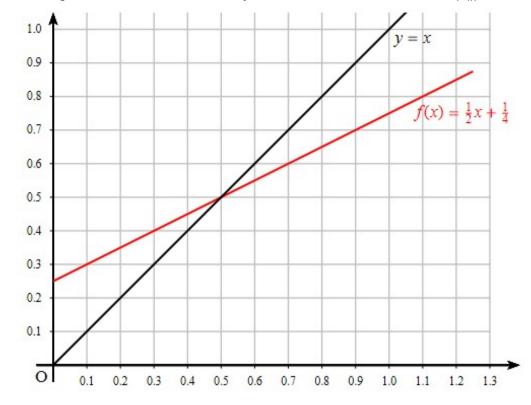
janv 2022

Ex 1: Soit la suite (u_n) définie par $u_0=2$ et $u_{n+1}=\frac{u_n}{1+2u_n}$

- 1) A l'aide de votre calculatrice, conjecturer graphiquement le comportement de la suite (u_n) pour les grandes valeurs de n On prendra comme fenêtre : $X \in [0; 1]$ et $Y \in [0; 0,5]$
- 2) On pose $v_n = 1 + \frac{1}{u_n}$; Prouver que la suite (v_n) est arithmétique. Donner son premier terme et sa raison
- 3) Exprimer v_n , puis u_n en fonction de n
- 4) En déduire la limite de la suite (u_n)

Ex 2: Soit la suite (u_n) définie par $u_0=1$ et $u_{n+1}=\frac{1}{2}u_n+\frac{1}{4}$

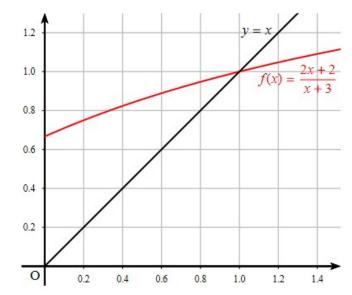
1) Placer sur l'axe des abscisses les termes u_0, u_1, u_2, u_3 sur la représentation ci-dessous. Conjecturer alors limite de la suite (u_n)



- 2) On pose $v_n = u_n 0.5$ pour tout $n \in \mathbb{N}$
 - a) Prouver que la suite (v_n) est géométrique
 - b) Exprimer v_n , puis u_n en fonction de n
 - c) Déterminer la limite de (v_n) ; en déduire la limite de la suite (u_n)

Ex 3: Soit la suite (u_n) définie par $u_0 = 0$ et $u_{n+1} = \frac{2u_n + 2}{u_n + 3}$

1) Placer sur l'axe des abscisses les termes u_0, u_1, u_2, u_3 sur la représentation ci-dessous. Conjecturer alors limite de la suite (u_n)



- 2) On pose $v_n = \frac{u_n 1}{u_n + 2}$ pour tout $n \in \mathbb{N}$
 - a) Prouver que la suite (v_n) est géométrique
 - b) Exprimer v_n , puis u_n en fonction de n
 - c) Déterminer la limite de (v_n) ; en déduire la limite de la suite (u_n)

Ex 4 : Pierre essaie de vendre sa vieille voiture 1000 € à Paul. Paul trouve ce prix trop cher et lui propose 500 €. Pierre décide de « couper la poire en deux » et lui propose alors 750 €. Paul tient alors le même raisonnement et lui propose 625 €. Et ainsi de suite Vont-il finir par se mettre d'accord ?

On pose u_0 =1000 la 1^{re} proposition de Pierre et u_1 =500 la 1^{re} proposition de Paul. Exprimer la proposition u_{n+2} en fonction des 2 propositions précédentes u_{n+1} et u_n ; Programmer cette suite sur votre calculatrice et conclure