- **50** *d* est la droite d'équation x + 5y 1 = 0. Imaginer une équation cartésienne d'une droite :
- a) parallèle à d;
- **b)** perpendiculaire à d.
- **51** d est la droite qui passe par le point A(4;1) et de vecteur directeur $\vec{u}(-1;2)$.
- a) Déterminer une équation cartésienne de d.
- **b)** Donner un vecteur \vec{n} normal à d.
- **c)** Déterminer les coordonnées de deux autres points de *d*.
- **52** *d* est la droite qui passe par le point A(4; 2) et de vecteur normal $\vec{n}(-3; -5)$.
- a) Déterminer une équation cartésienne de d.
- **b)** Donner l'équation réduite de d.
- c) Donner un vecteur directeur et la pente de d.
- Voici deux points : A(5;1) et B(-1;3). Déterminer un vecteur normal à la droite (AB) puis déterminer une équation cartésienne de cette droite.
- **54** d_1 et d_2 sont les droites d'équations cartésiennes respectives :

$$x + 2y - 4 = 0$$
 et $-3x - 6y + 8 = 0$.

- a) Déterminer un vecteur normal à chaque droite.
- **b)** En déduire que les droites d_1 et d_2 sont parallèles. Expliquer.
- On donne les points :

$$A(2;-2)$$
, $B(-4;1)$ et $C(-1;-3)$.

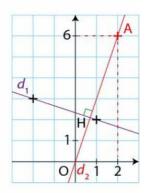
Déterminer une équation cartésienne de la hauteur issue de C dans le triangle ABC.

- On donne les points A(5; -2) et B(2; -1). Déterminer une équation cartésienne de la médiatrice du segment [AB].
- **58** On donne les points A(1; 3) et B(4; 2).
- a) Déterminer une équation cartésienne de la perpendiculaire d en A à la droite (AB).
- **b)** Déterminer une équation de la parallèle à *d* qui passe par B.
- **59** d_1 est la droite qui passe par le point A(2; 3) et de vecteur normal $\overrightarrow{n_1}(1; 2)$.

 d_2 est la droite d'équation cartésienne 2x - y + 4 = 0.

- a) Déterminer un vecteur normal $\overrightarrow{n_2}$ à la droite d_2 .
- **b)** Démontrer que les droites d_1 et d_2 sont perpendiculaires.
- **c)** Calculer les coordonnées du point d'intersection des droites d_1 et d_2 .

- 60 On donne le point A(2;1) et la droite d_1 d'équation cartésienne x + y 1 = 0.
- a) Déterminer une équation cartésienne de la perpendiculaire d_2 à la droite d_1 qui passe par A.
- **b)** Calculer les coordonnées du point d'intersection des droites d_1 et d_2 .
- **61** A(2; 3), B(-1; -1), C(4; -2) sont trois points.
- a) Réaliser une figure et la compléter tout au long de l'exercice.
- **b)** Déterminer une équation cartésienne de la hauteur d_1 issue de A dans le triangle ABC.
- c) d_2 est la droite d'équation cartésienne :


$$-5x + y + 9 = 0$$

Démontrer que les droites d_1 et d_2 sont parallèles.

- **d)** Démontrer que d_2 est la médiatrice de [BC].
- **62** La droite d_1 a pour équation cartésienne :

$$x + 3y - 7 = 0$$

- **a)** Déterminer une équation cartésienne de la droite d_2 qui passe par le point A(2; 6) et perpendiculaire à la droite d_1 .
- **b)** Déterminer les coordonnées du point d'intersection H des droites d_1 et d_2 .

- c) En déduire la distance du point A à la droite d_1 .
- 63 On donne les points :

$$A(2;-1)$$
, $B(4;3)$ et $C(0;2)$.

- a) Démontrer que la droite d_1 d'équation cartésienne 4x + y 7 = 0 est la hauteur issue de A dans le triangle ABC.
- **b)** Déterminer une équation cartésienne de la hauteur d_2 issue de B dans le triangle ABC.
- **c)** Déterminer les coordonnées du point d'intersection H de ces deux hauteurs.
- **d)** Vérifier que la droite (CH) est la troisième hauteur du triangle ABC.
- 64 On donne les points :

$$A(5;2)$$
, $B(-1;3)$ et $C(0;-4)$.

- **a)** Déterminer une équation cartésienne de chacune des médiatrices des segments [AB] et [AC].
- **b)** Déterminer les coordonnées du point d'intersection K de ces deux médiatrices.
- c) Vérifier que K est le centre du cercle circonscrit au triangle ABC, c'est-à-dire passant par A, B, C. Calculer son rayon.