Ex 1: (*) - Résoudre dans \mathbb{R} les équations exponentielles suivantes :

$$(E_1): e^{2-x} = e^x$$
 donc $2-x = x$ donc $x = 1$

$$(E_2): e^{2x+3}=1$$
 donc $e^{2x+3}=e^0$ donc $2x+3=0$ donc $x=-1,5$

$$(E_3): e^{5-x^2} = e$$
 donc $e^{5-x^2} = e^1$ donc $-x^2 + 5 = 1$ donc $x^2 = 4$ donc $x = -2$ ou $x = 2$

$$(E_4): e^x = \frac{2}{1+e^x}$$
 donc $e^x(1+e^x)=2$ donc $e^{2x}+e^x-2=0$

on pose $X=e^x$ donc $X^2+X-2=0$ alors $\Delta=9$ donc X=1 ou X=-2donc on obtient $e^x=1$ ou $e^x=-2$ or $e^x>0$ donc $e^x=1$ donc x=0

Ex 2 : (**) - Étudier globalement les fonctions suivantes sur \mathbb{R} :

a) $f(x)=(-4)e^{3-2x}$ donc $f'(x)=8e^{3-2x}$ $e^{3-2x} \neq 0$ et $e^{3-2x} > 0$ donc f'(x) > 0 (aucune racine de la dérivée)

on en déduit le tableau de variations de f:

x	$-\infty$	2,2		+∞
signe de f'	+		+	
f		1		0

b)
$$f(x) = \frac{e^x - 2}{e^x + 2}$$
 ; $f'(x) = \frac{4e^x}{(e^x + 2)^2}$

or $4e^x > 0$ et $(e^x + 2)^2 > 0$ donc f'(x) > 0

on en déduit le tableau de variations de f:

x	$-\infty$		1	<u>+∞</u>
signe de f'	_	F	+	
f	-1	0,	15	1

c)
$$f(x)=(1-x)e^x$$
 donc $f'(x)=(-1)e^x+(1-x)e^x=(-x)e^x$

f'(x)=0 donne $(-x)e^x=0$ donc -x=0 (car $e^x\neq 0$) donc x=0f'(x)>0 donne $(-x)e^x>0$ donc -x>0 (car $e^x>0$) donc x<0n en déduit le tableau de variations de f:

Х	$-\infty$	0	+∞
signe de f '	+	0	_
f	0	1	8

d)
$$f(x)=1-x^2e^x$$
 donc $f'(x)=(-2x)e^x+(-x^2)e^x=(-x^2-2x)e^x$
 $f'(x)=0$ donne $(-x^2-2x)e^x=0$ donc $-x^2-2x=0$ (car $e^x\neq 0$) donc $x=0$ ou $x=-2$
 $f'(x)>0$ donne $(-x^2-2x)e^x>0$ donc $-x^2-2x>0$ (car $e^x>0$) donc $-2
on en déduit le tableau de variations de f :$

Х	$-\infty$	-2		0		$-+\infty$
signe de f '	_	0	+	0	_	
f	0	0,46		1		

e)
$$f(x)=x^2e^{-x}$$
 donc $f'(x)=(2x)e^{-x}+x^2(-e^{-x})=(-x^2+2x)e^{-x}$

f'(x)=0 donne $(-x^2+2x)e^{-x}=0$ donc $-x^2+2x=0$ (car $e^{-x}\neq 0$) donc x=0 ou x=2

f'(x)>0 donne $(-x^2+2x)e^{-x}>0$ donc $-x^2+2x>0$ (car $e^{-x}>0$) donc 0 < x < 2

on en déduit le tableau de variations de f:

Х	$-\infty$	0		2		+00
signe de f '	_	0	+	0	_	
f	+∞	0 -		0,54		0

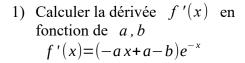
f)
$$f(x)=e^{-x^2+2x}$$
 donc $f'(x)=(-2x+2)e^{-x^2+2x}$
 $f'(x)=0$ donne $(-2x+2)e^{-x^2+2x}=0$ donc $-2x+2=0$ donc $x=1$
 $f'(x)>0$ donne $(-2x+2)e^{-x^2+2x}>0$ donc $-2x+2>0$ donc $x<1$

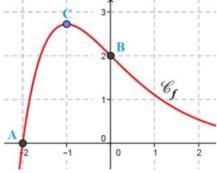
X	$-\infty$	1		+∞
signe de f '	+	0	_	
f		e		0

Ex 3: (***) - La courbe C_f représente une fonction f définie sur \mathbb{R} par : $f(x) = (ax+b)e^{-x}$ où a, b sont 2 réels.

On sait que C_f passe par les points A(-2;0) et B(0;2); de plus la tangente (T) à la courbe C_f au point C d'abscisse -1 est horizontale

on en déduit le tableau de variations de f:





2) Déterminer les valeurs de a, b à l'aide des données

$$\begin{cases} f(-2)=0 \\ f(0)=2 \\ f'(-1)=0 \end{cases} \text{ donc } \begin{cases} -2a+b=0 \\ b=2 \\ 2a-b=0 \end{cases} \text{ donc } \begin{cases} 2a-b=0 \\ b=2 \end{cases} \text{ et } \begin{cases} a=1 \\ b=2 \end{cases}$$

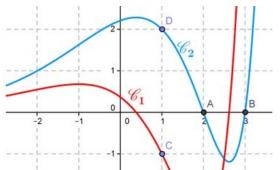
3) Étudier globalement la fonction f sur \mathbb{R} $f(x)=(x+2)e^{-x}$ an abtient la tebleau de variations de f

on obtient le tableau de variations de f:

X	$-\infty$	-1	+∞
signe de f'	+	0	_
f	-00	e	0

Ex 4: (*)** - On donne les graphiques (C_1) et (C_2) ci-dessous La courbe (C_1) correspond à la dérivée f' et la courbe (C_2) correspond à la fonction f avec $f(x)=(x^2+a\,x+b)e^{x+c}$ où $a,b,c\in\mathbb{R}$

1) on a
$$\begin{cases} f(2)=0 \\ f(3)=0 \end{cases}$$
 donc
$$\begin{cases} 2a+b+4=0 \\ 3a+b+9=0 \end{cases}$$
 donc
$$\begin{cases} 2a+b=-4 \\ 3a+b=-9 \end{cases}$$



- 2) Déterminer les valeurs de a et b on obtient a=-5 et b=6
- 3) Calculer f'(x) en fonction de c on a $f'(x)=(2x+a)e^{x+c}+(x^2+ax+b)e^{x+c}$ soit $f'(x)=(x^2+(a+2)x+a+b)e^{x+c}$ ou encore $f'(x)=(x^2-3x+1)e^{x+c}$
- 4) En utilisant le point C(1;-1) déterminer la valeur de c $f'(1)=-1 \text{ donc } (-1)e^{1+c}=-1 \text{ donc } e^{1+c}=1 \text{ donc } c=-1$
- 5) Étudier globalement la fonction f sur \mathbb{R} $f(x)=(x^2-5x+6)e^{x-1}$ les racines de la dérivée sont $x_1=\frac{3-\sqrt{5}}{2}$ et $x_2=\frac{3-\sqrt{5}}{2}$ on en déduit le tableau de variations de f:

X	$-\infty$	2	x_1	<i>X</i> ₂	+0
signe de f '		+ () –	0	+
f	0	2,2	28	-1,19	+0