Ex 1: Pour chaque fonction suivante dresser le tableau de signes $f(x)=(3x-2)e^x$

X	$-\infty$	2/3	+ \pi
3x-2	_	0	+
e^{x}	+		+
f(x)	_	0	+

$$g(x)=(x^2-4x+3)e^{-x}$$

Х	$-\infty$	1		3		+∞
$x^2 - 4x + 3$	+	0	_	0	+	
e^{-x}	+		+		+	
f(x)	+	0	_	0	+	

$$h(x) = \frac{e^x + 2}{e^x - 1}$$

Χ	$-\infty$	0		+∞
$e^{x}+2$	+		+	
$e^{x}-1$	_	0	+	
f(x)	_		+	

$$k(x) = -e^{1-x^2}$$

X	$-\infty$	+∞
-1	_	
e^{1-x^2}	+	
f(x)	_	

 ${\it Ex\,2}$: Pour chaque fonction suivante calculer la dérivée

$$f(x) = -e^{x^2 - 2x} \text{ donc } f'(x) = -(2x - 2)e^{x^2 - 2x} = (-2x + 2)e^{x^2 - 2x}$$

$$g(x) = (-3x + 4)e^x \text{ donc } g'(x) = -3e^x + (-3x + 4)e^x = (-3x + 1)e^x$$

$$h(x) = (2x^2 - 1)e^{-x} \text{ donc } h'(x) = (4x)e^{-x} - (2x^2 - 1)e^{-x} = (-2x^2 + 4x + 1)e^{-x}$$

$$k(x) = \frac{e^{-x}}{x - 1} \text{ donc } k'(x) = \frac{-e^{-x}(x - 1) - e^{-x}}{(x - 1)^2} = \frac{e^x(-x)}{(x - 1)^2}$$

Ex 3 : Pour chaque fonction suivante étudier globalement les variations

$$f(x)=(-2x+5)e^{x}$$
; $f'(x)=(3-2x)e^{x}$

X	-00	1,5	+∞
signe de f '	+	0	_
f	0	9	$-\infty$

$$g(x)=(x^2-4)e^x$$
; $g'(x)=(x^2+2x-4)e^x$; $x_1=1-\sqrt{5}$; $x_2=1+\sqrt{5}$

Х	$-\infty$	\boldsymbol{x}_1		\boldsymbol{X}_2		+∞
signe de f '	+	0	_	0	+	
f	0	0,25		-8,5		+∞

$$h(x)=(3x+1)e^{-x+2}$$
; $h'(x)=(2-3x)e^{2-x}$

Х	$-\infty$	1	+∞
signe de f '	+	0	_
f		11,4	0

Ex 4 : Résoudre les équations exponentielles suivantes

(E₁):
$$e^{x^2-1} = e^{2x}$$
 donc $x^2-1=2x$ donc $x^2-2x-1=0$ donc $S = \{1-\sqrt{2}; 1+\sqrt{2}\}$

(E₂):
$$e^{2x^2+x+1}=1$$
 donc $2x^2+x+1=0$ donc $S=\emptyset$

(E₃):
$$\frac{e^x - 1}{e^x + 2} = -1$$
 donc $e^x - 1 = -e^x - 2$ donc $2e^x = -1$ donc $S = \emptyset$

(E₄):
$$\frac{e^x - 1}{e^x + 2} = e^x$$
 donc $e^x - 1 = e^x (e^x + 2)$ donc $e^{2x} + e^x + 1 = 0$
or $e^x + 2 = 0$ donc $e^x + 2 = 0$

Ex 5 : Résoudre les inéquations exponentielles suivantes

(E₁):
$$e^{x^2-1} > e^{2x}$$
 donc $x^2-1 > 2x$ donc $x^2-2x-1 > 0$ donc $S =]-\infty; 1-\sqrt{2}] \cup [1+\sqrt{2}; +\infty[$

(E₂):
$$e^{2x^2+x+1} \le 1$$
 donc $2x^2+x+1 \le 0$ or $\Delta < 0$ donc $S = \emptyset$

(E₃):
$$\frac{e^x - 1}{e^x + 2} \ge -1$$
 donc $e^x - 1 \ge -e^x - 2$ donc $2e^x > -1$ donc $S = \mathbb{R}$

(E₄):
$$\frac{e^{x}-1}{e^{x}+2} > e^{x}$$
 donc $e^{x}-1 > e^{2x}+2e^{x}$ donc $e^{2x}+e^{x}+1 < 0$
or $\Delta < 0$ donc $S = \emptyset$

Ex 6: On donne les fonctions $f(x)=xe^{-x}$ et $g(x)=x^2e^{-x}$ avec $x \ge 0$

1) Étudier les variations des fonctions f et g sur l'intervalle $[0;+\infty[$ $f'(x)=e^{-x}-xe^{-x}=e^{-x}(1-x)$ f'(x)=0 donne 1-x=0 (car $e^{-x}\neq 0$) donc x=1 f'(x)>0 donne 1-x>0 (car $e^{-x}>0$) donc x<1

on en déduit le tableau de variations de f:

X	0	1	+∞
signe de f '	+	0	_
f	0	0,37	0

De même $g'(x)=2xe^{-x}+x^2(-e^{-x})=e^{-x}(-x^2+2x)$ g'(x)=0 donne $-x^2+2x=0$ (car $e^{-x}\neq 0$) donc x=0 ou x=2 g'(x)>0 donne $-x^2+2x>0$ (car $e^{-x}>0$) donc 0< x<2 on en déduit le tableau de variations de g:

X	0	2	+∞
signe de f '	+	0	_
f	0	0,54	0

- 2) Résoudre l'équation f(x)=g(x)on obtient $xe^{-x}=x^2e^{-x}$ donc $e^{-x}(x-x^2)=0$ donc $x-x^2=0$ (car $e^{-x}\neq 0$) donc x=0 ou x=1
- 3) Résoudre l'inéquation $f(x) \ge g(x)$ on obtient $xe^{-x} \ge x^2e^{-x}$ donc $e^{-x}(x-x^2) \ge 0$ donc $x-x^2 \ge 0$ (car $e^{-x} > 0$) donc $x \in [0;1]$
- 4) En déduire la position relative des courbes C_f et C_q
 - Si $x \in [0;1]$ alors C_f est au-dessus de C_q
 - Si x=1 alors C_f coupe C_g au point $A(1; \frac{1}{e})$
 - Si $x \in [1; +\infty[$ alors C_q est au-dessus de C_f
- 5) vers la « *Tale spé* » : Calculer l'aire de la partie du plan délimitée par C_f et C_g sur l'intervalle [0;1] $Aire = \int_{0}^{1} (f(x) g(x)) . dx = \int_{0}^{1} (x x^2) e^{-x} . dx \approx 0,104 ua$

