Cours

Enroulement de la droite des réels sur le cercle trigonométrique

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$, I est le point tel que $\vec{i} = \overrightarrow{OI}$ et J le point tel que $\vec{i} = \overrightarrow{OI}$.

Définition Le cercle trigonométrique est un cercle de rayon 1, sur lequel on définit un sens positif de parcours : c'est le sens inverse des aiguilles d'une montre. On parle aussi de sens direct.

On considère le cercle trigonométrique $\mathscr C$ de centre O (sa longueur est donc égale à 2π).

La droite (d), tangente à \mathscr{C} en l, est munie du repère $(l; \vec{j})$: on l'assimile à la droite des nombres réels.

Sur la droite des nombres réels, on place un point d'abscisse x.

Quand on enroule, sur le cercle \mathscr{C} , la demi-droite des nombres réels positifs dans le sens direct, et celle des nombres réels négatifs dans le sens indirect, chaque nombre réel x vient « s'appliquer » sur un unique point M du cercle \mathscr{C} . On dit que le point M est **le point associé** au nombre réel x.

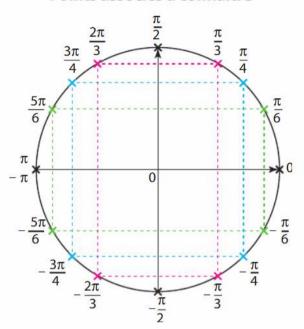
Mais x n'est pas le seul nombre réel étant associé au point M.

En effet, puisque la longueur du cercle $\mathscr C$ est égale à 2π , le point M est aussi le point associé aux nombres réels $x+2\pi, x-2\pi...$ (représentés sur le graphique ci-contre).

ProPriétés Soit M un point du cercle trigonométrique associé à un nombre réel x.

- M est le point associé à tous les nombres réels de la forme $x + k2\pi$ où k est un entier relatif.
- Si x' est un nombre réel tel que $x x' = k2\pi$ où k est un entier relatif, alors M est aussi le point associé à x'.

Points associés à connaître



2)

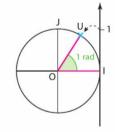
Une nouvelle unité de mesure d'angle : le radian

A Mesure en radians d'angles géométriques

Définition Soit U le point du cercle trigonométrique associé au nombre réel 1. On définit 1 radian (1 rad) comme la mesure de l'angle géométrique lOU.

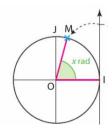
Définition Soit x un nombre réel appartenant à l'intervalle $[0; \pi]$ et M le point du cercle trigonométrique de centre O associé à x. x est appelé la **mesure en radians** de l'angle géométrique \widehat{IOM} .

Exemple • J est le point associé au nombre réel $\frac{\pi}{2}$ donc $\widehat{\text{IOJ}}$ a pour mesure $\frac{\pi}{2}$ rad.



ProPriété Les mesures en degrés et en radians d'un angle géométrique sont **proportionnelles**.

Mesure en degrés	0°	30°	45°	60°	90°	180°
Mesure en radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π



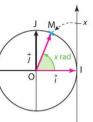
B Mesures en radians d'angles orientés de vecteurs

Une autre appellation de l'angle géométrique lOM est MOl. Si pour aller de l à M, le chemin est aussi long que pour se rendre de M à I, il ne s'effectue pas dans le même sens. C'est pour différencier ces deux angles que l'on va définir des angles orientés de vecteurs.

Définition Soit *x* un nombre réel et M le point du cercle trigonométrique de centre O associé à *x*.

On dit que x est une mesure en radians de l'angle orienté de vecteurs (\vec{i}, \vec{OM})

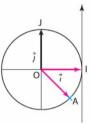
RemaRque • M étant le point associé à tous les nombres réels de la forme $x + k2\pi$ où k est un entier relatif, l'angle orienté (\vec{i}, OM) admet donc x comme mesure en radians mais également tous les nombres réels de la forme $x + k2\pi$ où k est un entier relatif.



© Mesure principale d'un angle orienté de vecteurs

Définition La mesure **principale** d'un angle orienté de vecteurs est l'unique mesure de cet angle **appartenant à l'intervalle** $]-\pi$; π].

E_{xEmPle} • $-\frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{15\pi}{4}; \dots$ sont des mesures de l'angle orienté de vecteurs (\vec{i}, OA) . Mais la mesure principale de cet angle est $-\frac{\pi}{4}$ car c'est la seule qui appartienne à l'intervalle $]-\pi;\pi]$.

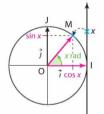


→ Voir Exercices résolus 3 et 4

Cosinus et sinus d'angles orientés de vecteurs

A Définitions et valeurs remarquables

Définition Soit M un point du cercle trigonométrique de centre O et x une mesure en radians de l'angle orienté de vecteurs (\vec{i}, \vec{OM}) . Le **cosinus** de x est l'abscisse du point M; on le note **cos** x. Le **sinus** de x est l'ordonnée du point M; on le note **sin** x.



Valeurs remarquables : le tableau ci-dessous donne des valeurs de cosinus et de sinus à connaître car elles sont souvent utilisées dans les exercices.

Mesure en radians x de l'angle orienté (\hat{i}, OM)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
sin <i>x</i>	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

B Propriétés immédiates

ProPriétés Pour tout nombre réel x,

$$-1 \le \cos x \le 1$$
 $-1 \le \sin x \le 1$,

$$\cos^2 x + \sin^2 x = 1$$

•
$$\cos(x + k2\pi) = \cos x \quad \sin(x + k2\pi) = \sin x \quad (k \text{ entier relatif})$$

Remarque • cos 2x signifie $(\cos x)^2$.

Angles associés

ProPriétés

Pour tout nombre réel x,

•
$$\cos(-x) = \cos x$$
 $\sin(-x) = -\sin x$

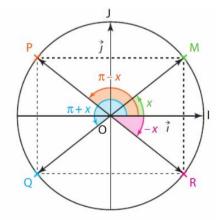
$$\cdot \cos(\pi - x) = -\cos x \quad \sin(\pi - x) = \sin x$$

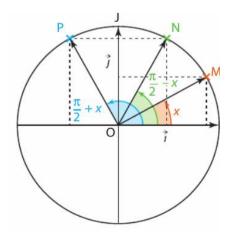
$$\cdot \cos(\pi + x) = -\cos x \quad \sin(\pi + x) = -\sin x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x \quad \sin\left(\frac{\pi}{2} + x\right) = \cos x$$

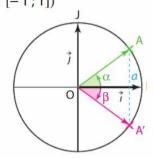
RemaRque • Le cercle trigonométrique permet de retrouver facilement ces propriétés.





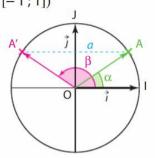
Équations trigonométriques

Équations de la forme $\cos x = a$ ($a \in [-1;1]$)



Sur le cercle trigonométrique, il existe deux points A et A' d'abscisse a; ils sont symétriques par rapport à l'axe des abscisses.

Équations de la forme $\sin x = a$ ($a \in [-1; 1]$)



Sur le cercle trigonométrique, il existe deux points A et A' d'ordonnée a; ils sont symétriques par rapport à l'axe des ordonnées.

ProPriété Si on note α une mesure en radians de l'angle orienté (\vec{i}, OA) et \vec{i} une mesure en radians de l'angle orienté (\vec{i}, OA) alors les équations $\cos x = a$ et $\sin x = a$ admettent dans \mathbb{R} deux familles de solutions : $x = a + k2\pi$ et $x = \beta + k2\pi$ où k est un entier relatif.

RemaRque • Si l'équation à résoudre est $\cos x = a$ alors on peut prendre $\beta = -\alpha$ et si l'équation à résoudre est $\sin x = a$ alors on peut prendre $\beta = \pi - \alpha$.

6

Fonctions trigonométriques

On s'intéresse aux deux fonctions trigonométriques définies sur \mathbb{R} : $\cos : x \mapsto \cos x$ et $\sin : x \mapsto \sin x$.

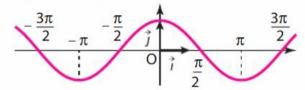
On a vu dans le cours **3B** p. 176 que pour tout nombre réel x, $\cos(x+2\pi) = \cos x$ et $\sin(x+2\pi) = \sin x$.

ProPriété Les fonctions cosinus et sinus sont des fonctions périodiques de période 2π .

Conséquence graphique: dans le plan muni d'un repère orthogonal $(0; \vec{i}, \vec{j})$ les courbes représentatives des fonctions cosinus et sinus sont invariantes par translation de vecteur $2\pi \vec{i}$.

On a également vu dans le cours **4** que pour tout nombre réel x, $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$.

Représentation graphique de la fonction cosinus sur \mathbb{R}



ProPriétés La fonction cosinus est une fonction paire, la fonction sinus est une fonction impaire.

Conséquence graphique : dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$ la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées et celle de la fonction sinus est symétrique par rapport à O.

Représentation graphique de la fonction sinus sur \mathbb{R}

