On rappelle les valeurs remarquables des sinus et cosinus :

x (rad)	0	<u>π</u>	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0
sin x	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Les exercices suivants seront résolus $\underline{\text{sans utiliser la machine}}$. Mais il est conseillé d'utiliser la figure ci-contre \to

EXERCICE 2C.1

a. Compléter :

$$\cos \frac{\pi}{4} = \dots$$

$$\sin \frac{\pi}{6} = \dots$$

$$\sin\frac{\pi}{3} = \dots$$

$$\cos - \frac{\pi}{4} = \dots$$

$$\sin - \frac{\pi}{6} =$$

$$\cos \pi = \dots$$

$$\sin - \frac{\pi}{3} =$$

$$\cos\frac{2\pi}{3} = \dots$$

$$\sin\frac{5\pi}{6} = \dots$$

$$\cos\frac{3\pi}{4} = \dots$$

$$\sin\frac{-3\pi}{4} = \dots$$

$$\cos\frac{-5\pi}{3} = \dots$$

$$\sin \frac{-3\pi}{6} =$$

$$\cos \frac{\pi}{2} = \dots$$

$$\sin \frac{-3\pi}{2} =$$

EXERCICE 2C.2

a. Compléter :

$$\cos x = \frac{\sqrt{3}}{2} \text{ donc } x = \dots \text{ ou } \dots$$

$$\sin x = \frac{\sqrt{2}}{2} \text{ donc } x = \dots \text{ ou } \dots$$

$$\cos x = \frac{1}{2} \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\sin x = 1 \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\cos x = \frac{\sqrt{2}}{2} \text{ donc } x = \dots \text{ ou } \dots$$

$$\sin x = 0 \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\cos x = -\frac{\sqrt{3}}{2} \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\sin x = -\frac{\sqrt{2}}{2} \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\cos x = -1 \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\sin x = -\frac{1}{2} \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\cos x = 0 \operatorname{donc} x = \dots \operatorname{ou} \dots$$

$$\sin x = -\frac{\sqrt{3}}{2} \text{ donc } x = \dots \text{ ou } \dots$$

b. Déterminer une mesure en radians de l'angle dont on connaît le cosinus et le sinus

$$\cos x = \frac{\sqrt{3}}{2}$$
 et $\sin x = -\frac{1}{2}$ donc $x =$

$$\cos x = -\frac{\sqrt{2}}{2} \text{ et } \sin x = -\frac{\sqrt{2}}{2} \text{ donc } x = \dots$$

$$\cos x = 1$$
 et $\sin x = 0$ donc $x = \dots$

$$\cos x = 0$$
 et $\sin x = -1$ donc $x = \dots$

$$\cos x = -\frac{\sqrt{3}}{2}$$
 et $\sin x = -\frac{1}{2}$ donc $x =$

$$\cos x = -\frac{1}{2} \text{ et } \sin x = -\frac{\sqrt{3}}{2} \text{ donc } x = \dots$$