Scientific notation

1) What is the scientific notation?

Scientific notation is a method of writing or between 1 and 10 multiplied by a power of 10 .

In scientific notation all numbers are written like
displaying numbers in terms of a decimal number
this: $a \times 10^{b}$ expefficient $\left.\right|_{\text {base }} ^{\text {expent }}$ "a times ten to the power of $\mathrm{b} "$

Scientific notation has a number of useful properties and is commonly used in calculators, and by scientists, mathematicians, doctors, and engineers.

2) Examples

- An electron's mass is about 0.00000000000000000000000000000091093822 kg . In scientific notation, this is written $9.1093822 \times 10^{-31} \mathrm{~kg}$.
- The Earth's mass is about 5973600000000000000000000 kg . In scientific notation, this is written

$5.9736 \times 10^{24} \mathrm{~kg}$.

- The Earth's circumference is approximately
- An inch is 25400 micrometers. This is written

3) Order of magnitude

Scientific notation also enables simpler order-ofFor example, if you want to compare a proton's 0.0000000000000000000000000016726 kg) with $1.6726 \times 10^{-27} \mathrm{~kg}$ and $9.1093822 \times 10^{-31} \mathrm{~kg}$. proton's mass is bigger than the electron's mass
4) Rules for calculations
4.1) Rules for multiplication in scientific

1) Multiply the coefficients
2) Add the exponents (base 10 remains)

Example $1:\left(3 \times 10^{4}\right)\left(2 \times 10^{5}\right)=6 \times 10^{9}$
What happens if the coefficient is more than 10 when using scientific notation?
Example 2 : $\left(5 \times 10^{3}\right)\left(6 \times 10^{3}\right)=30 . \times 10^{6}$

While the value is correct it is not correctly written between 1 and 10. We then must move the between 1 and 10. For each place we move the ten.

40000000 m . In scientific notation, this is $4 \times 10^{7} \mathrm{~m}$. 2.5400×10^{4}
magnitude comparisons.
mass (about
an electron's mass (about
kg), it is easier to compare the scientific notations Indeed, 10^{-27} is much bigger than 10^{-31} so the

notation

$30 . \times 10^{6}=3.0 \times 10^{7}$ in scientific notation.
Example 3: $\left(2.2 \times 10^{4}\right)\left(7.1 \times 10^{5}\right)=15.62 \times 10^{9}=1.562 \times 10^{10}$

Example 4: $\left(7 \times 10^{4}\right)\left(5 \times 10^{6}\right)\left(3 \times 10^{2}\right)=105 . \mathrm{x}$ over and the exponent is raised by 2 . Therefore
10^{12} Now the decimal must be moved two places the value in scientific notation is: 1.05×10^{14}

4.2) Rules for division in scientific notation

1) Divide the coefficients
2) Subtract the exponents (base 10 remains)

Example $1:\left(6 \times 10^{6}\right) /\left(2 \times 10^{3}\right)=3 \times 10^{3}$

What happens if the coefficient is less than $10 ?$
Example 2: $\left(2 \times 10^{7}\right) /\left(8 \times 10^{3}\right)=0.25 \times 10^{4}$
While the value is correct it is not correctly written in scientific notation since the coefficient is not between 1 and 10. We must move the decimal between 1 and 10. For each place we move the point over to the right until the coefficient is of ten.
$0.25 \times 10^{4}=2.5 \times 10^{3}$ in scientific notation.

