Thales' theorem

Let's draw a circle from the central point O , and draw a diameter AB .
Chose a point C lying on the circle, and connect it with A and B . The circle is circumscripted to the ABC triangle, and point O is the medium point of AB side. Connecting O to C , we observe that OA $=\mathrm{OC}=$ radius of the circle, so triangle AOC is isosceles, and so angle $\mathrm{CAO}^{\wedge}=\mathrm{ACO}^{\wedge}=\alpha$.
Doing the same observations with BOC triangle, $\mathrm{OC}=\mathrm{OB}=$ radius, so OBC is an isosceles triangle too, and so $\mathrm{OCB}^{\wedge}=\mathrm{CBO}^{\wedge}=\beta$.

Knowing that the sum of the internal angles of a triangle is 180° :
$\mathrm{CAB}^{\wedge}+\mathrm{ABC}^{\wedge}+\mathrm{BCA}^{\wedge}=180^{\circ}=\alpha+\beta+(\alpha+\beta)=180^{\circ} \quad 2(\alpha+\beta)=180^{\circ} \quad \alpha+\beta=90^{\circ}$
So triangle ABC is rectangle!!!!! We've arrived at Thales' theorem:
If we connect the extremes of a diameter of a circle to one point lying on the circle, we always obtain a rectangle triangle, which hypotenuse is the diameter $A B$.

Thales' theorem II (reverse) : if the central point of a circle circumscripted to a triangle is the medium point of one of its sides, the triangle is rectangle, and the central point of the circle is the medium point of the hypotenuse.

Example 1 : we've a circle, with central point O, and an external point P. We want to draw the tangents to the circle from point P.I connect O to P . I draw the medium point of OP, F (with compasses!!!). I draw a circle from central point F , with radius FO. This new circle meets the first one at points E and G . Connecting P to G and E I obtain the tangent lines.
I observe that triangles POE and POG are unscripted into the second circle, and their hypotenuse is the diameter OP. For Thales' theorem these triangles are rectangle!
If I draw the two tangent lines to a circle from an external point, the lines are equal and the radius of the circle is perpendicular to them.

Example 2: Prove that the vertices of a side of a triangle and the intersection point with the altitude drawn by these point with the opposite side, are lying on the same circle.
Let's draw triangle ABC , and then the altitudes from A and B, AQ and BT . We know that BT and AQ are perpendicular to AC and CB . So ABT and ABQ are rectangle triangle, and they've the same hypotenuse AB . From Thales' theorem, AB is the diameter of the circle, which passes by T and Q .

Exercise 1 : Imagine a circle road, we have a town A far 13 km from town B, both are on the road, and it's the maximum distance two town can have on this road. If a bike goes straight from A to town C , on the same road, and this distance is 5 km , how far is C from B ?

Exercise 2: We have a circle of 5 cm radius. If we inscribe a triangle, and one rectangle angle side is: a) 6 cm ; b) 8 cm ; c) 2 cm ; how much is the other rectangle angle side long?

Exercise 3: We've a circle with central point O and radius 4 cm . Taking a point P of the plane far from O : a) 5 cm ; b) 7 cm ; c) 12 cm ; let's calculate the length of the lines tangent to the circle from point P .

