Theory:

When brackets are removed from around a sum or difference, then any factors outside the brackets must be multiplied by each term inside the brackets.
For example, to remove the brackets in this expression:

$$
a(x+y)
$$

the factor ' a ' outside the brackets must be multiplied by both the ' x ' and the ' y ' inside the brackets, like this:

$$
a \times x+a \times y
$$

To 'expand' an expression means to remove the brackets.
During expansion, the factor ' a ' is distributed over the terms ' x ' and ' y '.
Differences are expanded in the same way. For example, expanding this expression:

$$
a(x-y)
$$

gives this expanded expression:

$$
a \times x-a \times y
$$

If there are several factors outside the brackets, and more than two terms inside the brackets, then exactly the same procedure applies.

For example, expanding:

$$
3 a b^{2} c\left(2 a+3 a b-5 b c^{2}+1\right)
$$

gives:

$$
3 a b^{2} c \times 2 a+3 a b^{2} c \times 3 a b-3 a b^{2} c \times 5 b c^{2}+3 a b^{2} c \times 1
$$

In this case, each term can then be simplified, giving:

$$
6 a^{2} b^{2} c+9 a^{2} b^{3} c-15 a b^{3} c^{3}+3 a b^{2} c
$$

