Basic proportionality theorem and mid point theorem

Put the sentences below into the right order, as shown in the example.

A	and find the value of EF,
B	So if DE is drawn
C	and AD is equal to EF.
D	Now after this we have
E	is parallel and equal to the half
F	half of the side BC.
G	parallel to BC,
H	CD is given parallel to EF,
I	This is exactly what we mean
J	which is simply 8.
K	D end E are the mid points
L	is equal to AE over EC.
M	Is it 3 ? Is it 4?
N	then we have that DE is parallel to BC,
O	of any two sides of a triangle
P	divides the other two sides in the same ratio.
Q	it would divide the side $A B$
R	of the third side.
S	the basic proportionnality theorem.
T	and DE is also
U	Is it 8, is it 6 or is it 10?
V	It said that in triangle AEF,
W	and side AC proportionally.
X	of sides AB and AC,
Y	In a triangle, if a line is drawn
Z	here is an example based upon these theorems.
AA	Simply apply the mid point theorem
AB	If in triangle ABC,
AC	Now, after all these theorems,
AD	A line basically joining the mid points
AE	Also, CD is equal to 4.
AF	by the mid point theorem.
AG	So what is the measure of EF?
AH	Then we have the mid point theorem.
parallel to one side of a triangle (then it)	
That means AD over DB	

