## Essential algebra

Algebra is the branch of mathematics in which letters are used to represent numbers. You can use letters even when you do not know the number itself.


Example 1: Jas has some CDs. If he buys 3 more CDs, how many will he have altogether?
You do not know how many CDs Jas starts with, but you can use algebra to say:
Jas starts with $\boldsymbol{x}$ CDs $\boldsymbol{x}$ CDs and $\mathbf{3 C D s}$ is $\boldsymbol{x}+\mathbf{3}$ CDs
Example 2: Ann wins some cinema tickets. She gives 6 to friends. How many tickets has she got left? You do not know how many tickets she had to start with, but you can say she had $\mathbf{y}$. After giving away 6 tickets she has $\mathbf{y}$ - 6 tickets left.

Exercise 1 : Use algebra to write
13 more than a :
$3 x$ more than 7 :
5 c with 3 taken away:
$7 x$ more than $y$
9 3b with 6 subtracted:
10 Paul has d DVDs. He buys 3 more. How many DVDs has he got now?
11 Rob has $n$ apples. He eats 2 apples. How many apples has he got now? $\qquad$
12 Tom has $£ x$. He spends $£ 5$. How much money has he got now? $\qquad$
13 Three boxes contain the same numbers of balls. There are $x$ balls in each box. How many balls contain the three boxes altogether?: $\qquad$


14 How many balls do you get if you add another box containing 5 balls ? $\qquad$ 5

## Adding with letters

In algebra you can add letters that are the same. For example:
a+a can be written as 2a

> a means 1 a
> so $1 \mathrm{a}+1 \mathrm{a}=2 \mathrm{a}$
$\mathbf{a}+\mathbf{a}+\mathbf{a}$ can be written as $\mathbf{3 a}$
Terms which use the same letter or arrangement of letters are called like terms: $a$ and $3 a$ are like terms, $2 g$ and $8 g$ are like terms.
Sometimes you can make algebraic expressions simpler by adding or subtracting like terms.
You can combine like terms by adding them:


Exercise 2 Write these in a shorter form. The first one is done for you.
$1 a+a+a+a+a+a=6 a$
$2 p+p+p+p=$
$4 \quad q+q+q+q+q+q=$
3 b+b+b+b+b= $\qquad$
$\qquad$
Exercise 3 Make these expressions simpler by adding or subtracting like terms.
$12 a+4 a=$ $\qquad$ $23 b+4 b=$ $\qquad$ $35 c+2 c=$ $\qquad$
4 5d-3d= $\qquad$ 5 7e-3e= $\qquad$ $65 f+f=$ $\qquad$
9 5c-3c-4c= $\qquad$
$106 \mathrm{~g}-7 \mathrm{~g}+\mathrm{g}=$ $\qquad$
8 2a+5a-a= $\qquad$
12 9s-6s-12s= $\qquad$

## Collecting like terms

Sometimes algebraic expressions have more than one term and you can simplify them by collecting like terms together.

## Example

To simplify
Collect the a terms and the $b$ terms:
Combine the a terms and the $b$ terms:
$2 a+4 b+3 a+5 b$
$2 a+3 a+4 b+5 b$
$5 a+9 b$

Exercise 4 Simplify these expressions completely by collecting like terms.
$13 a+4 b+4 a+2 b=$ $\qquad$
$3 \quad 2 p+3 q+p+2 q=$ $\qquad$
5 5y+7p-3y-5p= $\qquad$
$\qquad$
$95 h+8+2 h+2=$ $\qquad$
$11-7-8 n+3-2 n=$ $\qquad$
$26 m+5 n+3 m+2 n=$
$48 e+6 c+8 e=$
6 4a+8g-3a-2g+a= $\qquad$
$86 d+7 f-8 d-7 f=$
$103 f-2 f+4-f+8=$
$125+g-2 h-8+g-h+3=$

## Multiplying with letters and numbers

Remember: $\mathbf{2 a}$ is $\mathbf{a + a} \quad \mathbf{3 a}$ is $\mathbf{a}+\mathbf{a}+\mathbf{a} \quad \mathbf{a x a}$ is $\mathbf{a}^{2}$ and $\mathbf{b x b x b}$ is $\mathbf{b}^{3}$

But: $\quad \mathbf{2 a}$ also means 2 lots of a or 2 multiplied by a or $\mathbf{2 x a}$
3a means 3 lots of a or 3 multiplied by a or 3xa
In algebra, when you want to multiply two items you just write them next to each other, like this:
$\mathbf{2 x a}$ is written 2a, cxd is written cd, axb is written ab, 3xexf is written 3ef
Exercise 5 Write these expressions in a simpler form. The first one is done for you.
1
$p \times q=p q$
2 exf=
3 rxsxt= $\qquad$
$42 \times e=$ $\qquad$ $52 \times c \times d=$
6 sxs=
$82 \times \mathrm{axa}=$
$9 \mathrm{a} \times \mathrm{a} \times \mathrm{b}=$ $\qquad$

## Multiplying algebraic expressions

Sometimes you can simplify an algebraic expression, such as 2a3b, by multiplying the terms by each other: $2 a 3 b=2 \times a \times 3 \times b=2 \times 3 \times a \times b=6 a b$

Exercise 6 Simplify these expressions by multiplying the terms by each other. The first one is done for you.

| 1 | $2 \mathrm{ax} 4 \mathrm{~b}=8 \mathrm{ab}$ | 2 | $3 \mathrm{cx} 5 \mathrm{~d}=$ | 3 | $3 p \times 4 q=$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | $5 \mathrm{sx4t}=$ | 5 | fx2f= | 6 | $2 \mathrm{gxg}=$ |
| 7 | $9 \mathrm{mx4n}=$ | 8 | $3 \mathrm{ax} 2 \mathrm{a}=$ | 9 | $9 \mathrm{bx2b}=$ |
| 10 | $5 \mathrm{p} \times 4 \mathrm{r}=$ | 11 | $2 \mathrm{ax6ab}=$ | 12 | $5 p \times 4 q \times 2 p=$ |

Exercise 7 Simplify these expressions by multiplying the terms by each other and then collecting like terms.
(Be careful $\boldsymbol{a}^{\mathbf{2}}$ and a are note like terms)
$15 \mathrm{ax} 2 \mathrm{a}+3 \times 6 \mathrm{a}+\mathrm{a}=$ $\qquad$
$26 b+2 \times 3 b+b x b+5 b^{2}=$
$34 c x c-3 c^{2}+6 c x 3 c=$
$4 \quad \mathrm{dx} 3 \mathrm{~d}-5 \mathrm{~d}^{2} \times 4+\mathrm{cxc}+\mathrm{c}^{2}=$ $\qquad$
5 ex3e+4+3x52-15e2=
6 f2$-3 f x 5-2 f x 5 f+g^{2}+5=$ $\qquad$
7 -5+gxg ${ }^{2}-g^{2}+3=$
$8-5 h^{2}+5 i x-3 i-2 h x-3 h=$
$9 \quad-2 x-5 j--5 x-2 j=$
$108 k^{2}-10 k+15-+2 k x-2 x+2 x 5 k+3 x-5=$

