Exercices supplémentaires : Etude de fonctions

Partie A : Avec les fonctions de référence

Exercice 1

Dans chacun des cas, comparer a^2 et b^2 sans utiliser la calculatrice

- 1) a = 2,402 et b = 2,42
- 2) a = 7 et $b = 4\sqrt{3}$
- 3) a = -0.5 et $b = \frac{1}{2}$
- 4) a = 3.14 et $b = \pi$

Exercice 2

Donner dans chacun des cas suivants, le meilleur encadrement possible de a^2

- 1) $a \in [2:5]$
- 2) $-20 \le a \le -10$
- 3) $a \in [-1; 3]$
- 4) $-5 \le a \le 5$

Exercice 3

Dans chacun des cas suivant, comparer les inverses des ombres donnés, sans utiliser la calculatrice.

- 1) 211 et 212
- 2) $-\frac{3}{4}$ et -1
- 3) 3,14 et π
- 4) 2,0395 et $\frac{4078}{2000}$

Exercice 4

Donner, dans chacun des cas suivants, le meilleur encadrement possible pour $\frac{1}{x}$:

- 1) $x \in [3; 4]$
- 2) $-2 \le x \le -1$
- 3) $x \in]-\infty; -5]$
- 4) $x \in [7; +\infty[$

Exercice 5

On considère la fonction $f: x \mapsto x^2 - 3$ définie sur \mathbb{R} .

- 1) Calculer f(-3); $f(\sqrt{2})$ et $f(\frac{1}{2})$
- 2) Déterminer les antécédents de 2 par f.
- 3) Démontrer que la fonction f est croissante sur $[0; +\infty[$ et décroissante sur $]-\infty, 0]$.

Exercice 6

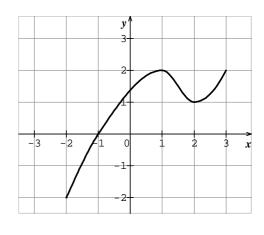
On considère la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + 1$.

Démontrer que la fonction f est croissante sur $]-\infty;0]$ et décroissante sur $[0;+\infty[$.

Exercice 7

On considère la fonction f dont la courbe représentative est donnée cicontre. On note g la fonction inverse de f, c'est-à-dire $g=\frac{1}{f}$.

- 1) Déterminer l'ensemble de définition de g.
- 2) Justifier que g est décroissante sur [-2; -1[.
- 3) Déterminer, en justifiant, les variations de g sur]-1;1], sur [1;2] et sur [2;3].
 - 4) Dresser le tableau de variations de g.



Partie B : Avec la fonction racine carrée

Exercice 1

Déterminer le plus grand ensemble de définition possible pour la fonction f dans chacun des cas suivants

- 1) $f(x) = \sqrt{x+1} \sqrt{x-1}$
- 2) $f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 1}$
- 3) $f(x) = \sqrt{x^2 5x + 6}$
- $4) \quad f(x) = \frac{\sqrt{x-3}}{\sqrt{x+5}}$
- $5) \quad f(x) = \sqrt{\frac{2-x}{x}}$

Exercice 2

On considère la fonction f définie par $f(x) = \sqrt{x+2} - 1$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Justifier que f est croissante sur $[-2; +\infty[$.
- 3) Résoudre f(x) = 4.

Exercice 3

On considère la fonction f définie par $f(x) = 2 - \sqrt{x-3}$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Justifier que f est décroissante sur $[3; +\infty[$.
- 3) Démontrer que f admet un maximum que l'on précisera.
- 4) Résoudre f(x) = 0.

Exercice 4

Pour $0 \le x \le 4$, déterminer un encadrement de

- 1) $2\sqrt{x} + 3$
- 2) $\sqrt{4x}$
- 3) $\sqrt{x+9}$
- 4) $\sqrt{8-2x}$
- 5) $\sqrt{x^2 + 8}$

Partie C: Avec la valeur absolue

Exercice 1

Calculer les nombres suivants :

$$A = |-2 - 3|$$

$$B = |-6 + 9|$$

$$C = |-6| + |9|$$

$$D = |1 - 2 - 3|$$

$$E = |1| + |-2| + |-3|$$

$$F = |1 - 2 - 3| - |-4|$$

Exercice 2

Exprimer les nombres suivants sans valeur absolue.

$$A = \left| \frac{3}{4} - \frac{\sqrt{2}}{2} \right|$$

$$B = |\sqrt{5} + 1|$$

$$C = \left| -\sqrt{3} - \sqrt{6} \right|$$

$$D = \left| -\sqrt{2} + 1 \right|$$

$$E = \left| \frac{\sqrt{2}}{3} - \frac{\sqrt{3}}{2} \right|$$

$$F = |\pi - 1|$$

$$G = |2\sqrt{3} - 3|$$

$$H = |-\pi^2 + 10|$$

$$I = \left| \frac{2}{3} - 1 + \sqrt{2} \right|$$

$$J = \left| -\sqrt{3} - 1 \right|$$

Dans chaque cas, écrire l'expression E sans utiliser la valeur absolue, en tenant compter de l'hypothèse sur x, puis simplifier au maximum.

1)
$$E = |x - 1| + |x| - 2|x + 2|$$
 pour $x \ge 1$

2)
$$E = \left| \frac{2}{3} - x \right| - |x| + |x - 1| \text{ pour } x \le 0$$

3)
$$E = |2x| + 2|x + 1| + |-3 - x|$$
 pour $x \ge 0$

Exercice 4

Exprimer sans valeurs absolues:

$$A = \left| \sqrt{3} - 4 \right| + 2\left| 5 - 2\sqrt{3} \right| - \left| -6 - \sqrt{3} \right|$$

$$B = \left| 10^2 - 10^{-3} \right| - 2\left| 10^{-2} - 10 \right|$$

$$C = \left| 2 + \sqrt{2} \right| \times \left| -3 + 2\sqrt{2} \right| - 3\left| -5 - \sqrt{2} \right|$$

$$D = \left| \sqrt{98} - \sqrt{18} \right| - 3\left| \sqrt{8} - 2\sqrt{72} \right|$$

Exercice 5

Résoudre les équations et les inéquations suivantes

a)
$$|x-7|=2$$

b)
$$|5 + x| = \sqrt{2}$$

c)
$$|2x + 3| = 5$$

d)
$$|x| = \pi$$

e)
$$|x + 3| > 2$$

f)
$$|4x - 6| \le 3$$

g)
$$2 \le |x| \le 6$$

h)
$$1 < |-2x + 7| < 5$$

i)
$$|x + 2| = |x - 6|$$

i)
$$|x-3| > |x+1|$$

Exercice 6

Résoudre les équations suivantes de manière algébrique ou géométrique.

1)
$$|x| = 4$$

2)
$$|x| = -3$$

3)
$$|x| + 2x = -1$$

4)
$$|x-5|=3$$

5)
$$|2x + 1| = 7$$

6)
$$|x + 5| = |8 - x|$$

Exercice 7

Résoudre géométriquement les inéquations suivantes

- 1) $|x| \le 4$
- 2) $|x| \ge 1$
- 3) $|x| 3 \le 2$
- 4) $|x-4| \ge 2$
- 5) $|4x + 3| \le 1$

Partie D : Bilan

Exercice 1

On veut résoudre l'équation $\sqrt{x} = x - 1$.

- 1) Tracer sur l'écran de la calculatrice les courbes représentatives des fonctions $f: x \mapsto \sqrt{x}$ et $g: x \mapsto x 1$. Conjecturer le nombre de solutions et une valeur approchée de chaque solution.
 - 2) Démontrer que si x < 1, x ne peut pas être solution de l'équation.
 - 3) On suppose que $x \ge 1$. Démontrer que l'équation $\sqrt{x} = x 1$ est équivalente à $x^2 3x + 1 = 0$.

4) Résoudre cette dernière équation et conclure.

Exercice 2

On considère la fonction $f: x \mapsto \sqrt{-x}$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Démontrer que f est décroissante sur $]-\infty;0]$.
- 3) Résoudre f(x) = 5.

Exercice 3

On considère la fonction $f: x \mapsto a\sqrt{x} + b$ définie sur $]0; +\infty[$ où a et b sont deux réels. On donne f(4) = 0 et f(1) = 2.

- 1) Déterminer a et b.
- 2) Démontrer que f est décroissante sur]0; $+\infty[$.

Exercice 4

On considère la fonction $f: x \mapsto a\sqrt{x+1} - 3$ définition sur $[-1; +\infty[$.

- 1) Déterminer le sens de variations de f en discutant suivant les valeurs de a.
- 2) On donne f(8) = -5. Démontrer que f est décroissante sur $[-1; +\infty[$ et qu'elle ne prend que des valeurs négatives.

Exercice 5

On considère la fonction $f: x \mapsto x + |x| + 1$ définie sur \mathbb{R} .

- 1) Ecrire f(x) sans utiliser la valeur absolue, suivant les valeurs de x.
- 2) Représenter graphiquement la courbe de la fonction f.
- 3) Démontrer que pour tout réel x, $f(x) \ge 1$.

Exercice 6

On considère la fonction $f: x \mapsto |2x - 5|$ définie sur \mathbb{R} .

- 1) Ecrire f(x) sans utiliser la valeur absolue, suivant les valeurs de x.
- 2) Dresser le tableau de variations de f.
- 3) Représenter graphiquement la courbe de la fonction f.

Exercice 7

On considère la fonction $f: x \mapsto 2|x| + |x - 3|$ définie sur \mathbb{R} .

- 1) Ecrire f(x) sans utiliser la valeur absolue, suivant les valeurs de x.
- 2) Dresser le tableau de variations de f.
- 3) Représenter graphiquement la courbe de la fonction f.

Exercice 8

On considère la fonction $f: x \mapsto |x+2| - |3x-4|$ définie sur \mathbb{R} .

- 1) Ecrire f(x) sans utiliser la valeur absolue, suivant les valeurs de x.
- 2) Dresser le tableau de variations de f.
- 3) Représenter graphiquement la courbe de la fonction f.

Correction exercices supplémentaires : Etude de fonctions

Partie A : Avec les fonctions de référence

- 1) $0 < a < b \text{ donc } a^2 < b^2 \text{ car la fonction carrée est croissante sur } [0; +\infty[$
- 2) $a^2 = 49$ et $b^2 = 4^2 \times 3 = 16 \times 3 = 48$ donc $a^2 > b^2$
- 3) $a = -b \text{ donc } a^2 = b^2$
- 4) $0 < a < b \text{ donc } a^2 < b^2 \text{ car la fonction carrée est croissante sur } [0; +\infty[$

Exercice 2

- 1) $2 \le a \le 5$ donc $4 \le a^2 \le 25$ car la fonction carrée est croissante sur $[0; +\infty[$
- 2) $-20 \le a \le -10$ donc $400 \ge a^2 \ge 100$ car la fonction carrée est décroissante sur $]-\infty;0]$
- 3) $0 \le a^2 \le 9$ car si $a \in [-1; 0]$ alors $a^2 \in [0; 1]$ et si $a \in [0; 3]$ alors $a^2 \in [0; 9]$.
- 4) $-5 \le a \le 5$ donc $0 \le a^2 \le 25$ car si $a \in [0; 5]$ alors $a^2 \in [0; 25]$ tout comme si $a \in [-5; 0]$.

Exercice 3

- 1) $211 < 212 \operatorname{donc} \frac{1}{211} > \frac{1}{212} \operatorname{car} \operatorname{la}$ fonction inverse est décroissante sur $]0; +\infty[$ 2) $-\frac{3}{4} > -1 \operatorname{donc} -\frac{4}{3} < -1 \operatorname{car} \operatorname{la}$ fonction inverse est décroissante sur $]0; +\infty[$ 3) $3,14 < \pi$ car la fonction inverse est décroissante sur $]0; +\infty[$ 4) $2,0395 \operatorname{et} \frac{4078}{2000} = \frac{2036}{1000} = 2,036 \operatorname{donc} \frac{1}{2,0395} < \frac{1}{2,036} \operatorname{car} \operatorname{la}$ fonction inverse est décroissante sur $]0; +\infty[$

Exercice 4

- 1) $3 \le x \le 4$ donc $\frac{1}{3} \ge \frac{1}{x} \ge \frac{1}{4}$ car la fonction inverse est décroissante sur $]0; +\infty[$
- 2) $-2 \le x \le -1$ donc $-\frac{1}{2} \ge \frac{1}{x} \ge -1$ car la fonction inverse est décroissante sur $]-\infty$; 0[
- 3) $x \le -5$ donc $0 \ge \frac{1}{x} \ge -\frac{1}{5}$ car la fonction inverse est décroissante sur $]-\infty$; 0[
- 4) x > 7 donc $0 < \frac{1}{x} < \frac{1}{7}$ car la fonction inverse est décroissante sur $]0; +\infty[$

Exercice 5

- 1) f(-3) = 6; $f(\sqrt{2}) = -1$ et $f(\frac{1}{2}) = -\frac{11}{4}$ 2) $f(x) = 2 \Leftrightarrow x^2 3 = 2 \Leftrightarrow x^2 = 5 \Leftrightarrow x = \sqrt{5}$ ou $-\sqrt{5}$

Les antécédents de 2 par f sont donc $\sqrt{5}$ et $-\sqrt{5}$.

3) f est de la forme u + k avec u la fonction carrée et k = -3 donc les variations de f sont les mêmes que celles de u. Donc f est croissante sur $[0; +\infty[$ et décroissante sur $]-\infty, 0]$.

Exercice 6

 $x \mapsto x^2$ est croissante sur $[0; +\infty[$ et décroissante sur $]-\infty, 0]$.

Donc $x \mapsto -x^2$ est décroissante sur $[0; +\infty[$ et croissante sur $]-\infty, 0]$ car on multiplie par un nombre négatif. Et donc, par addition de 1, f est décroissante sur $[0; +\infty[$ et croissante sur $]-\infty, 0]$.

Exercice 7

- 1) g est de la forme $\frac{1}{f}$ donc elle est définie pour x tel que $x \in D_f$ et $f(x) \neq 0$. Ici , $D_f = [-2; 3]$ et f s'annule uniquement en -1. Donc g est définie sur $[-2; -1[\cup]-1; 3]$.
- 2) Sur $[-2; -1[: f \text{ est croissante et ne s'annule pas donc la fonction } \frac{1}{f} \text{ est décroissante car les variations de } \frac{1}{f}$ sont les opposées de celles de u.
 - 3) Sur]-1;1], f est croissante et ne s'annule pas donc $\frac{1}{f}$ est décroissante.

Sur [1; 2], f est décroissante et ne s'annule pas donc $\frac{1}{f}$ est croissante.

Sur [2; 3], f est croissante et ne s'annule pas donc $\frac{1}{f}$ est décroissante.

х	-2	_	1 1	2		3
Variations de <i>g</i>	$-\frac{1}{2}$	\	$\frac{1}{2}$	7 1	7	$\frac{1}{2}$

Partie B : Avec la fonction racine carrée

Exercice 1

- 1) $f(x) = \sqrt{x+1} \sqrt{x-1}$: f est de la forme $\sqrt{u} \sqrt{v}$ avec $u: x \mapsto x+1$ et $v: x \mapsto x-1$. Elle est donc définie pour $u(x) \ge 0$ et $v(x) \ge 0$. Or $u(x) \ge 0 \Leftrightarrow x+1 \ge 0 \Leftrightarrow x \ge -1$ et $v(x) \ge 0 \Leftrightarrow x-1 \ge 0 \Leftrightarrow x \ge 1$. Les deux conditions doivent être vérifiées en même temps donc $D_f = [1; +\infty[$.
- 2) $f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 1}$: f est de la forme $\sqrt{u} + \sqrt{v}$ avec $u: x \mapsto x^2 + 1$ et $v: x \mapsto x^2 1$. Elle est donc définie pour $u(x) \ge 0$ et $v(x) \ge 0$. Or $u(x) \ge 0 \Leftrightarrow x^2 + 1 \ge 0$ qui est toujours vrai et $v(x) \ge 0 \Leftrightarrow x^2 1 \ge 0$: $\Delta = 4$ donc $x^2 1$ est du signe de a = 1 sauf entre les racines 1 et -1 donc v est positive sur $]-\infty;-1] \cup [1;+\infty[$. On a donc $D_f =]-\infty;-1] \cup [1;+\infty[$.
- 3) $f(x) = \sqrt{x^2 5x + 6}$: f est de la forme \sqrt{u} avec $u: x \mapsto x^2 5x + 6$. Elle est définie pour $u(x) \ge 0$ or $u(x) \ge 0 \Leftrightarrow x^2 5x + 6 \ge 0$: $\Delta = 1$ donc $x^2 5x + 6$ est du signe de a = 1 sauf entre les racines 2 et 3. Finalement $D_f =]-\infty; 2] \cup [3; +\infty[$.
- 4) $f(x) = \frac{\sqrt{x-3}}{\sqrt{x+5}}$: f est de la forme $\frac{\sqrt{u}}{\sqrt{v}}$ avec $u: x \mapsto x-3$ et $v: x \mapsto x+5$. Elle est définie pour $u(x) \ge 0$; $v(x) \ge 0$ et $v(x) \ne 0$, autrement dit $u(x) \ge 0$ et v(x) > 0. Or $u(x) \ge 0 \Leftrightarrow x-3 \ge 0 \Leftrightarrow x \ge 3$ et $v(x) > 0 \Leftrightarrow x+5 > 0 \Leftrightarrow x > -5$ Les deux conditions doivent être vérifiées en même temps donc $D_f = [3; +\infty[$.
- 5) $f(x) = \sqrt{\frac{2-x}{x}}$: f est de la forme \sqrt{u} avec u: $x \mapsto \frac{2-x}{x}$. Elle est donc définie pour $u(x) \ge 0$. Or u est définie sur $\mathbb{R} \{0\}$ (car le dénominateur doit être non nul). L'étude du signe de u passe par un tableau de signes :

				<u> </u>	<u> </u>		
x	-∞		0		2		8+
Signe de <i>x</i>		_	0	+		+	
Signe de $2 - x$		+		+	0	_	
Signe de $u(x)$		_		+	0	_	

Au final $D_f =]0; 2]$

Exercice 2

- 1) f est de la forme $\sqrt{u}-1$ avec $u:x\mapsto x+2$ donc elle est définie pour $u(x)\geq 0$ or $u(x)\geq 0 \Leftrightarrow x+2\geq 0 \Leftrightarrow x\geq -2$ donc $D_f=\left[-2;+\infty\right[$
- 2) u est une fonction affine de coefficient directeur positif donc elle est croissante sur D_f . \sqrt{u} a les mêmes variations que u et ajouter -1 ne modifie pas les variations donc f est bien croissante sur D_f .
 - 3) Sur $\left[-2;+\infty\right[:$

$$f(x) = 4 \Leftrightarrow \sqrt{x+2} - 1 = 4 \Leftrightarrow \sqrt{x+2} = 5$$

 $\Leftrightarrow x + 2 = 25$ car la fonction carrée est strictement croissante sur $[0; +\infty[$ $\Leftrightarrow x = 23 \text{ donc } S = \{23\}$

Exercice 3

- 1) f est de la forme $2-\sqrt{u}$ avec $u:x\mapsto x-3$. Elle est donc définie pour $u(x)\geq 0$, autrement dit $D_f=[3;+\infty[$
 - 2) u est croissante sur D_f car c'est une fonction affine de coefficient directeur positif.

 \sqrt{u} a les mêmes variations que u; la multiplication par (-1) change les variations donc $-\sqrt{u}$ est décroissante sur D_f . Ajouter 2 ne modifie pas les variations donc f est bien décroissante sur D_f .

- 3) Comme f est décroissante sur D_f , on aura toujours $f(x) \le f(3)$ donc f(3) est le maximum de f et vaut 2.
- 4) $f(x) = 0 \Leftrightarrow 2 \sqrt{x 3} = 0 \Leftrightarrow -\sqrt{x 3} = -2 \Leftrightarrow \sqrt{x 3} = 2$

 $\Leftrightarrow x-3=4$ car la fonction carrée est strictement croissante sur $[0;+\infty[$

 $\Leftrightarrow x = 7 \quad \text{donc } S = \{7\}$

1)
$$0 \le x \le 4$$

donc $0 \le \sqrt{x} \le 2$ car la fonction racine carrée est croissante sur $[0; +\infty[$

donc $0 \le 2\sqrt{x} \le 4$ car on multiplie par 2 qui est positif

donc
$$3 \le 2\sqrt{x} + 3 \le 7$$
 en ajoutant 3.

2)
$$0 \le x \le 4$$

donc $0 \le 4x \le 16$ en multipliant par 4 qui est positif

donc $0 \le \sqrt{4x} \le 4$ car la fonction racine carrée est croissante sur $[0; +\infty[$ 3) $0 \le x \le 4$

donc $9 \le x + 9 \le 13$ en ajoutant 9

donc $3 \le \sqrt{x+9} \le \sqrt{13}$ car la fonction racine carrée est croissante sur $[0; +\infty[$ 4) $0 \le x \le 4$

donc $0 \ge -2x \ge -8$ en multipliant par -2 qui est négatif

donc $8 \ge 8 - 2x \ge 0$ en ajoutant 8

donc $\sqrt{8} \ge \sqrt{8 - 2x} \ge 0$ car la fonction racine carrée est croissante sur $[0; +\infty[$ 5) $0 \le x \le 4$

donc $0 \le x^2 \le 16$ car la fonction carrée est croissante sur $[0; +\infty[$

donc $8 \le x^2 + 8 \le 24$ en ajoutant 8

donc $\sqrt{8} \le \sqrt{x^2 + 8} \le \sqrt{24}$ car la fonction racine carrée est croissante sur $[0; +\infty[$

Partie C: Avec la valeur absolue

Exercice 1

$$A = |-2 - 3| = |-5| = \boxed{5}$$

$$B = |-6 + 9| = |3| = \boxed{3}$$

$$C = |-6| + |9| = 6 + 9 = 15$$

$$D = |1 - 2 - 3| = |-4| = \boxed{4}$$

$$E = |1| + |-2| + |-3| = 1 + 2 + 3 = \boxed{6}$$

$$F = |1 - 2 - 3| - |-4| = |-4| - 4 = \overline{4 - 4} = \overline{0}$$

Exercice 2

Exprimer les nombres suivants sans valeur absolue.

$$A = \left| \frac{3}{4} - \frac{\sqrt{2}}{2} \right| = \left| \frac{3}{4} - \frac{\sqrt{2}}{2} \right| \operatorname{car} \frac{3}{4} - \frac{\sqrt{2}}{2} > 0$$

$$B = |\sqrt{5} + 1| = |\sqrt{5} + 1|$$
 car $\sqrt{5} + 1 > 0$

$$C = \left| -\sqrt{3} - \sqrt{6} \right| = -\left(-\sqrt{3} - \sqrt{6} \right) = \sqrt{3} + \sqrt{6} \operatorname{car} -\sqrt{3} - \sqrt{6} < 0$$

$$D = \left| -\sqrt{2} + 1 \right| = -\left(-\sqrt{2} - 1 \right) = \sqrt{\frac{2}{2} - 1} \operatorname{car} - \sqrt{2} + 1 < 0$$

$$E = \left| \frac{\sqrt{2}}{3} - \frac{\sqrt{3}}{2} \right| = \left[-\frac{\sqrt{2}}{3} + \frac{\sqrt{3}}{2} \right] \operatorname{car} \frac{\sqrt{2}}{3} - \frac{\sqrt{3}}{2} < 0$$

$$F = |\pi - 1| = \boxed{\pi - 1} \operatorname{car} \pi - 1 > 0$$

$$G = |2\sqrt{3} - 3| = 2\sqrt{3} - 3 |$$
 car $2\sqrt{3} - 3 > 0$

$$H = |-\pi^2 + 10| = \boxed{-\pi^2 + 10} \operatorname{car} -\pi^2 + 10 > 0$$

$$I = \left| \frac{2}{3} - 1 + \sqrt{2} \right| = \frac{2}{3} - 1 + \sqrt{2} = \left| -\frac{1}{3} + \sqrt{2} \right| \operatorname{car} \frac{2}{3} - 1 + \sqrt{2} > 0$$

$$J = \left| -\sqrt{3} - 1 \right| = \sqrt{3} + 1 \operatorname{car} -\sqrt{3} - 1 < 0$$

Exercice 3

1) Comme $x \ge 1$, on a $x - 1 \ge 0$ donc |x - 1| = x - 1

Comme $x \ge 1$, on a $x \ge 0$ donc |x| = x

Comme $x \ge 1$, on a $x + 2 \ge 3 \ge 0$ donc |x + 2| = x + 2. Finalement :

$$E = x - 1 + x - 2(x + 2) = 2x - 1 - 2x - 4 = \boxed{-5}$$

2) Comme
$$x \le 0$$
, on a $\frac{2}{3} - x \ge \frac{2}{3}$ donc $\left| \frac{2}{3} - x \right| = \frac{2}{3} - x$

Comme $x \le 0$, on a |x| = -x

Comme $x \le 0$, on a $x - 1 \le -1$ donc |x - 1| = -x + 1. Finalement :

$$E = \frac{2}{3} - x - (-x) + (-x + 1) = \boxed{-x + \frac{5}{3}}$$

3) Comme $x \ge 0$, on a $2x \ge 0$ donc |2x| = 2x.

Comme $x \ge 0$, on a $x + 1 \ge 1$ donc |x + 1| = x + 1.

Comme $x \ge 0$, on a $-3 - x \le -3$ donc |-3 - x| = 3 + x. Finalement :

$$E = 2x + 2(x + 1) + (3 + x) = \boxed{5x + 5}$$

Exercice 4

$$A = |\sqrt{3} - 4| + 2|5 - 2\sqrt{3}| - |-6 - \sqrt{3}|$$

$$= -(\sqrt{3} - 4) + 2(5 - 2\sqrt{3}) - (6 + \sqrt{3}) \operatorname{car} \sqrt{3} - 4 < 0; \ 5 - 2\sqrt{3} > 0 \operatorname{et} -6 - \sqrt{3} < 0$$

$$= -\sqrt{3} + 4 + 10 - 4\sqrt{3} - 6 - \sqrt{3} = 8 - 6\sqrt{3}$$

$$B = |10^2 - 10^{-3}| - 2|10^{-2} - 10|$$

$$= 10^2 - 10^{-3} - 2(-10^{-2} + 10) \operatorname{car} 10^2 - 10^{-3} > 0 \operatorname{et} 10^{-2} - 10 < 0$$

$$= 100 - 0,001 - 2(-0,01 + 10) = 80,019$$

$$C = |2 + \sqrt{2}| \times |-3 + 2\sqrt{2}| - 3| - 5 - \sqrt{2}|$$

$$= (2 + \sqrt{2})(3 - 2\sqrt{2}) - 3(5 + \sqrt{2}) \operatorname{car} 2 + \sqrt{2} > 0; -3 + 2\sqrt{2} < 0 \operatorname{et} -5 - \sqrt{2} < 0$$

$$= 6 - 4\sqrt{2} + 3\sqrt{2} - 4 - 15 - 3\sqrt{2} = -13 - 4\sqrt{2}$$

$$D = |\sqrt{98} - \sqrt{18}| - 3|\sqrt{8} - 2\sqrt{72}|$$

$$= \sqrt{98} - \sqrt{18} - 3(-\sqrt{8} + 2\sqrt{72}) \operatorname{car} \sqrt{98} - \sqrt{18} > 0 \operatorname{et} \sqrt{8} - 2\sqrt{72} < 0$$

$$= \sqrt{2 \times 49} - \sqrt{2 \times 9} + 3\sqrt{2 \times 4} - 6\sqrt{2 \times 36} = 7\sqrt{2} - 3\sqrt{2} + 3 \times 2\sqrt{2} - 6 \times 6\sqrt{2} = -26\sqrt{2}$$

Exercice 5

a)
$$|x-7|=2$$
: la distance entre x et 7 est égale à 2 donc $S=\{5;9\}$

b)
$$|5 + x| = \sqrt{2} \Leftrightarrow |x - (-5)| = \sqrt{2}$$
:

la distance entre x et -5 est égale à $\sqrt{2}$ donc $S = \{-5 - \sqrt{2}; -5 + \sqrt{2}\}$

c)
$$|2x + 3| = 5 \Leftrightarrow \left| x + \frac{3}{2} \right| = \frac{5}{2} \Leftrightarrow \left| x - \left(-\frac{3}{2} \right) \right| = \frac{5}{2}$$

La distance entre x et $-\frac{3}{2}$ est égale à $\frac{5}{2}$ donc $S = \{-4; 1\}$

d)
$$|x| = \pi S = \{-\pi; \pi\}$$

e)
$$|x + 3| > 2 \Leftrightarrow |x - (-3)| > 2$$

La distance entre x et -3 est strictement supérieure à 2 donc $S =]-\infty; -5[\cup]-1; +\infty[$

f)
$$|4x - 6| \le 3 \Leftrightarrow \left|x - \frac{6}{4}\right| \le \frac{3}{4} \Leftrightarrow \left|x - \frac{3}{2}\right| \le \frac{3}{4}$$

La distance entre x et $\frac{3}{2}$ est inférieure à $\frac{3}{4}$ donc $S = \left[\frac{3}{4}; \frac{9}{4}\right]$

g) $2 \le |x| \le 6$ La distance entre x et 0 est comprise entre 2 et 6 donc $S = [-6; -2] \cup [2; 6]$

h)
$$1 < |-2x + 7| < 5 \Leftrightarrow \frac{1}{2} < \left|-x + \frac{7}{2}\right| < \frac{5}{2} \Leftrightarrow \frac{1}{2} < \left|\frac{7}{2} - x\right| < \frac{5}{2}$$

La distance entre $\frac{7}{2}$ et x est comprise entre $\frac{1}{2}$ et $\frac{5}{2}$ donc $S = [1; 3] \cup [4; 6]$

i)
$$|x + 2| = |x - 6|$$
 La distance entre x et -2 est égale à la distance entre x et 6 donc $S = \{2\}$

j)
$$|x-3| > |x+1|$$
 La distance entre x et 3 est supérieure à la distance entre x et -1 donc $S =]-\infty; 1[$

Exercice 6

- 1) |x| = 4: La distance de x à 0 est égale à 4 donc $S = \{-4, 4\}$
- 2) |x| = -3: Une distance n'est jamais négative donc $S = \emptyset$
- 3) |x| + 2x = -1:

Pour $x \ge 0$: |x| = x donc $|x| + 2x = -1 \Leftrightarrow x + 2x = -1 \Leftrightarrow x = -\frac{1}{3}$ ce qui n'est pas possible pour $x \ge 0$.

Pour $x \le 0$: |x| = -x donc $|x| + 2x = -1 \Leftrightarrow -x + 2x = -1 \Leftrightarrow x = -1$ Finalement $S = \{-1\}$

- 4) |x-5|=3: La distance entre x et 5 est égale à 3 donc $S=\{2;8\}$
- 5) $|2x+1|=7 \Leftrightarrow \left|x+\frac{1}{2}\right|=\frac{7}{2}$: la distance entre x et $-\frac{1}{2}$ est égale à $\frac{7}{2}$ donc $S=\{-4;3\}$
- 6) |x+5| = |8-x| La distance entre x et -5 est égale à la distance entre x et 8 donc $S = \left\{\frac{3}{2}\right\}$

Exercice 7

- 1) $|x| \le 4$: la distance entre x et 0 est inférieure à 4 donc S = [-4; 4]
- 2) $|x| \ge 1$: la distance entre x et 0 est supérieure à 1 donc $S =]-\infty; -1] \cup [1; +\infty[$
- 3) $|x| 3 \le 2 \Leftrightarrow |x| \le 5$ donc la distance entre x et 0 est inférieure à 5 donc S = [-5; 5].
- 4) $|x-4| \ge 2$: la distance entre x et 4 est supérieure à 2 donc $S =]-\infty; 2] \cup [6; +\infty[$
- 5) $|4x+3| \le 1 \Leftrightarrow \left|x+\frac{3}{4}\right| \le \frac{1}{4}$: la distance entre x et $-\frac{3}{4}$ est inférieure à $\frac{1}{4}$ donc $S = \left[-1; -\frac{1}{2}\right]$

Partie D : Bilan

Exercice 1

1) Il semble qu'il y ait un unique point d'intersection entre les deux courbes. Une valeur approchée de la solution de l'équation $\sqrt{x} = x - 1$ est 2,2.

- 2) Si x < 1, alors x 1 < 0 et comme une racine carrée est toujours positive ou nulle, nous n'aurons jamais $\sqrt{x} = x 1$. Donc l'équation $\sqrt{x} = x 1$ n'a pas de solutions inférieures strictement à 1.
 - 3) Pour $x \ge 1$:

 $\sqrt{x} = x - 1 \Leftrightarrow x = (x - 1)^2$ car la fonction carrée est strictement croissante sur $[0; +\infty[$ et que $x - 1 \ge 0$ $\Leftrightarrow x = x^2 - 2x + 1 \Leftrightarrow x^2 - 3x + 1 = 0$

4) $x^2 - 3x + 1 = 0$: $\Delta = (-3)^2 - 4 \times 1 \times 1 = 5 > 0$ donc l'équation a deux solutions : $x_1 = \frac{3+\sqrt{5}}{2}$ et $x_2 = \frac{3-\sqrt{5}}{2}$.

Or ceci est vrai pour $x \ge 1$, ce qui est bien le cas pour x_1 mais pas pour x_2 .

Au final, il n'y a bien qu'une solution : $S = \left\{ \frac{3+\sqrt{5}}{2} \right\}$

Exercice 2

- 1) f est de la forme \sqrt{u} avec $u: x \mapsto -x$ donc elle est définie pour $u(x) \ge 0$ or $u(x) \ge 0 \Leftrightarrow -x \ge 0 \Leftrightarrow x \le 0$ donc $D_f =]-\infty; 0].$
- 2) u est une fonction affine décroissante sur D_f car son coefficient directeur est négatif. \sqrt{u} a les mêmes variations que u donc f est décroissante sur D_f .
- 3) $f(x) = 5 \Leftrightarrow \sqrt{-x} = 5 \Leftrightarrow -x = 25$ car la fonction carrée est strictement croissante sur $[0; +\infty[$ $\Leftrightarrow x = -25 \mod S = \{-25\}$

Exercice 3

1)
$$\begin{cases} f(4) = 0 \\ f(1) = 2 \end{cases} \Leftrightarrow \begin{cases} a\sqrt{4} + b = 0 \\ a\sqrt{1} + b = 2 \end{cases} \Leftrightarrow \begin{cases} 2a + b = 0 \\ a + b = 2 \end{cases} \Leftrightarrow \begin{cases} b = -2a \\ a - 2a = 2 \end{cases} \Leftrightarrow \begin{cases} b = 4 \\ a = -2 \end{cases}$$

La fonction f est donc définie par $f(x) = -2\sqrt{x} + 4$.

2) La fonction racine carrée est croissante sur $[0; +\infty[$.

Multiplier par un nombre négatif modifie les variations donc $x \mapsto -2\sqrt{x}$ est décroissante. Ajouter 4 ne modifie pas les variations donc f est bien décroissante sur $[0; +\infty[$.

Exercice 4

3)

1) $x \mapsto x + 1$ est une fonction affine de coefficient directeur positif donc elle est croissante sur $[-1; +\infty[$ \sqrt{u} a les mêmes variations que u donc $x \mapsto \sqrt{x+1}$ est croissante sur $[-1; +\infty[$.

Si a est positif, alors $x \mapsto a\sqrt{x+1}$ est croissante sur $[-1; +\infty[$ et si a est négatif alors $x \mapsto a\sqrt{x+1}$ est décroissante sur $[-1; +\infty[$.

Ajouter -3 ne modifie pas les variations donc si a est positif, alors f est croissante sur $[-1; +\infty[$ et si a est négatif alors f est décroissante sur $[-1; +\infty[$.

2)
$$f(8) = -5 \Leftrightarrow a\sqrt{8+1} - 3 = -5 \Leftrightarrow 3a = -2 \Leftrightarrow a = -\frac{2}{3}$$

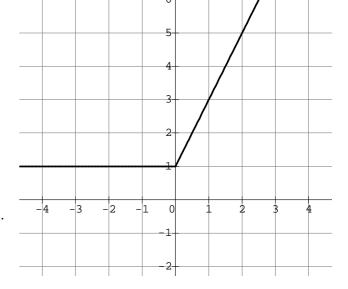
a est donc négatif donc f est décroissante sur $[-1; +\infty[$. Son maximum est donc atteint en -1 et vaut : f(-1) = -3. Le maximum étant négatif, f ne prend que des valeurs négatives.

Exercice 5

- 1) Si $x \ge 0$, alors |x| = x donc f(x) = 2x + 1. Si $x \le 0$ alors |x| = -x et donc f(x) = 1.
- 2) Voir ci-contre
- 3) Pour $x \le 0$: f(x) = 1 donc $f(x) \ge 1$.

Pour $x \ge 0$: f(x) = 2x + 1 donc sur cet intervalle, f est une fonction affine de coefficient directeur positif donc est croissante. Son minimum est donc atteint en 0 et vaut f(0) = 1. Donc nous avons aussi $f(x) \ge 1$.

Finalement, nous avons bien toujours $f(x) \ge 1$.

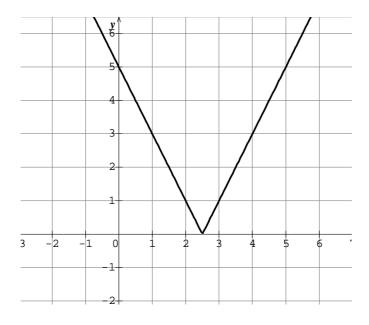


Exercice 6

- 1) Si $2x-5\geq 0$, autrement dit si $x\geq \frac{5}{2}$, alors f(x)=2x-5. Si $2x-5\leq 0$, autrement dit si $x\leq \frac{5}{2}$, alors f(x)=-2x+5.
- 2) Sur $\left]-\infty; \frac{5}{2}\right]$, f(x) = -2x + 5 donc f est décroissante (fonction affine de coefficient directeur négatif).

Sur $\left[\frac{5}{2}; +\infty\right[$, f(x) = 2x - 5 donc f est croissante (fonction affine de coefficient directeur positif).

	x	$-\infty$	5	+∞
			$\overline{2}$	
Var	iations de f		→ 0	



1)

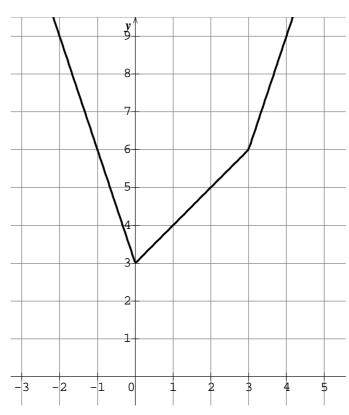
x	-∞		0		3		+∞
Signe de <i>x</i>		_	0	+		+	
x =		-x		x		X	
Signe de $x-3$		-		-	0	+	
x - 3 =		-x + 3		-x + 3		x-3	
f(x) =		2(-x) + (-x + 3) = -3x + 3		2x + (-x + 3) = x + 3		2x + x - 3 = 3x - 3	

Nous avons donc $f(x) = \begin{cases} -3x + 3 & \text{si } x \le 0 \\ x + 3 & \text{si } 0 < x < 3 \\ 3x - 3 & \text{si } x \ge 3 \end{cases}$ 2) Sur $]-\infty$; 0], f(x) = -3x + 3 donc f est décroissante (fonction affine de coefficient directeur négatif). Sur [0; 3], f(x) = x + 3 donc f est croissante.

Sur $[3; +\infty[$, f(x) = 3x - 3 donc f est également croissante.

x	-∞	0		+∞
Variations de f		→ 3	7	

3)



1)

х	-∞		-2		$\frac{4}{3}$		+∞
Signe de $x + 2$		-	0	+		+	
x + 2 =		-x - 2		x + 2		x + 2	
Signe de $3x - 4$		-		-	0	+	
3x - 4 =		-3x + 4		-3x + 4		3x - 4	
f(x) =		$\begin{array}{c} x - 2 - (-3x + 4) \\ 2x - 6 \end{array}$		$ \begin{array}{l} x + 2 - (-3x + 4) \\ = 4x - 2 \end{array} $		$ \begin{array}{l} x + 2 - (3x - 4) \\ = -2x + 6 \end{array} $	

2) Sur $]-\infty; -2]$, f(x)=2x-6 donc f est croissante. Sur $\left[-2; \frac{4}{3}\right]$, f(x)=4x-2 donc f est croissante également. Sur $\left[\frac{4}{3}; +\infty\right[$, f(x)=-2x+6 donc f est décroissante.

Ī	x	-∞	4	+∞
			$\frac{\overline{3}}{3}$	
	Variations de f		$\frac{10}{3}$	

3)

