%
BETTER
WEBSITE

Don’t miss our
step-by-step

guide, on sale now

for E6.96 at

Mastering

HTMLS: part 5

Animation can help to bring a website to life. Nik Rawlinson
shows you how you can use the tools built into HTML 5 to
achieve something flashy without the need for Flash

hen used with care and moderation,
w animation is a useful tool. Its implementation

can be purely decorative — as is the case with
most animated web ads — or functional, controlling the

behaviour of specific page elements.
To demonstrate how animation works, we'll be

taking the functional approach with a practical example
that you can implement on any site — a floating panel
that slides in from the edge of the browser. Such panels
are common on sites that encourage feedback from
their visitors. In this instance, we're going to use our

panel to provide the visitor with supplementary

information; implementing a feedback form instead
would be a simple matter of swapping out the panel
content for the necessary form and applying a regular
submit button tied to your form-handling routine (this

will often be provided by your ISP as part of your
hosting package).

Our panel is a simple flat graphic — a GIF created in
a standard photo editor and saved with a transparent

background. The transparency is important, as we

want the body of our page to remain visible behind the

</head>

<body>

<div id="menutab">

{div id="menutabcontents">

<{p>More info<{/p><img src="1amb.jpg"
align="1eft" width="150" height="100"
style="margin-right: 10px;"/>Here is
all of the further information you need
to know. You can even include images

if you want.

<form><input
type="button" value="You can include
forms. Here's a button"></form>

</div>

</div>

<div id="mainbody"><p>Lorem ipsum dolor
sit amet, consectetur adipiscing elit.
Aliquam eleifend convallis leo sit amet
vestibulum. Nunc eu faucibus risus. Duis
dictum, dolor a ultrices dictum, Torem
nisl viverra nisl, a aliquet sapien
lectus et felis.

<Jdiv>

More info

Here 15 all of the further information you
tmages if you want

[ou can include forms, Here's a bution

Lorem ipsum dolor sit amet, consectetur
Teo sit amet vestibulum. Nunc eu faucibus nisus. Duis dictum, dolo
a aliquet sapien lectus et felis.

ipiscing elhit Aliquam
ctum, dolor a ultrice

N

You can include forms. Here's a bution

Further info

WEB EXPERT

Further info

Lorem ipsum dolor sit amet, consectetur adipiscing elit Aliquan
vestibulum. Nunc eu faucibus nisus. Duis dictum, dolor a ultriceg
sapien lectus ot felis.

A The contents of our panel and our page are
the same thing. We just need to split them on to
separate layers

window. This tab will remain visible at all times,
but when the mouse isn’t hovering over it, the
remainder of the panel will be kept hidden.

To achieve this, we need to position the main
portion of the panel beyond the browser
boundaries. We'll do this by setting a negative
upper margin in our CSS code. The top of the
tab, where it joins the main body of the panel, is
215 pixels from the top of the image canvas, so
the upper margin will be set at -215px.

WRITING THE CSS
To write the CSS for this page, we need to think
in three dimensions. We need to specify the
horizontal and vertical positions of the elements
on our page (we can usually leave these alone,
unless we need to specifically anchor objects
within the layout). In addition, we need to
consider their relative heights, as though they
were coming out of the screen towards us.

We want our panel to slide down over
the main page body, so we need to tell the
browser to position it there using the z-index
attribute. Z-index describes the third axis on a

A Hover the mouse over the tab and it drops down
the full panel; this becomes an active area so the
visitor can move their mouse around within it

The ‘position’ attribute for the menutab
is therefore set to ‘fixed’, and we have also
called in the graphic that we created earlier to
be displayed as its background. Our initial CSS,
which is saved in an attached file called ‘slider.
css', as referenced in the header of the HTML
page, looks like this:

body {
margin-top: Opx;
overflow: scroll;
}
f#fmenutab {
width: 300px;
height: 242px;
background: url(tab.gif) no-repeat;
margin-top: -215px;
z-index: 1;
font: 0.8em Arial;
position: fixed;
}
{imenutabcontents {
padding: 10px 20px 10px 20px;
}

A When the mouse is away from the tab, the
panel remains out of view, so it doesn't interfere
with the page content

Reload the page and move your mouse over the
protruding tab, and you'll see that the whole
panel now pops out, overlaying the main body
of the page without disturbing the main body's
position, and that you can also move your
pointer around within the popped-out panel
without the panel disappearing, which it does
when we move our mouse away.

We're halfway there, but the result could
be better. Because of the shape of the tab,
which mimics closely that of the panel's main
body, it may look like it's being magnified
rather than sliding into position. We can fix
this by slowing down the transition using the
transition-duration element and its -moz, -ms
and -webkit variants to target Firefox (-moz),

IE (-ms) and both Chrome and Safari (-webkit).

We're doing a bit of forward-planning here
as far as Internet Explorer is concerned, because
version 9 doesn't support transition durations
fully, although work is underway to integrate it
into future releases. Still, any work done at this
stage will put you in good stead as the browser
is upgraded.

Maghguks.ﬂﬂm empty areas of the panel when it slides into position,
giving the pull-down tab a greater sense of realism. The
only parts of the panels that should be opaque are the
background on which we'll place the content and the

tab that will always be visible, poking down from the

We don't need to slow the animation down
much to achieve the result we're after. In this
case, we're going to set a duration of half a
second on all browsers by adding the following

page (x-axis, y-axis, z-axis), which in this case fimainbody {

comes vertically out from the page. Each object z-index: -1;

that you want to stack is given a value, with position: absolute;
higher-valued objects appearing further up the top: 30px;

If you preview the page in your browser, you'll see
that while the image sits to the left of the panel
contents, everything else on the page flows on from

INTRODUCTION

In Web Expert, Shopper 284,
we looked at how you can use
text effects to draw visitors’
attention to specific elements
on your page, giving them

of shadows. We also showed

you how to rotate them to

create more dynamic layouts.
In the final instalment of

we'll consider C553's most
advanced and ambitious

allows you to achieve effects
that were once open only to

dedicated tool.

extra prominence with the use

our guide to mastering HTMLS,

feature: native animation. This

those who used Flash or a rival

Nik Rawlinson qﬂ

Weh developer

lettersBcomputershopper.co.uk

top of the browser window.

Our graphic is 300 pixels wide and 242 pixels tall,

but yours should be large enough to fit whatever
content you need it to accommodate.

BUILDING YOUR PAGE

Our page is deceptively simple. We're coding it using
HTMLS so that we can take advantage of the simpler
header structure but, beyond that, the remainder of

the page is the same as it would be in HTML4.01.

We have just two elements: the primary content,

which is organised in a layer called ‘mainbody’, and

the palette itself, which is split into two parts — one

that defines the physical dimensions
encompassing the panel and the
protruding tab, called ‘menutab’, and
one for the contents that sit on top of
the panel, called ‘menutabcontents’.
For the time being, we have filled
the body of our page with dummy text,

what precedes it. We want the panel and its contents
to slide into view, but there's no ‘intelligence’ on this
page yet, and nothing to tell the browser how to handle
the panel animation.

You could conceivably add animation using
JavaScript, but it's far more efficient — in terms of
the amount of bandwidth consumed when displaying
the effect, and in the amount of code required to
implement it — to look to CSS instead and define its
behaviour at the same time as the page layout.

DOING THE MATHS
We have designed our panel with a tab on the bottom
as it will drop down from the top of the browser

and positioned an image, some text
and a button on the tab, as follows:

<IDOCTYPE html>

<head>

<{meta http-equiv="X-UA-
Compatible" content="1E=9" />
{title>Slider</title>

<{link href="slider.css"
rel="stylesheet"
type="text/css">

A So many sites use the dead browser space around their page designs to
display buttons and tabs, visitors will already be familiar with the concept

NOVEMBER 2011 ® COMPUTER SHOPPER * ISSUE 285

stack. To position our panel higher than the body
of our page, we can either give the menutab
layer a z-index of 2 while giving the mainbody
layer a z-index of 1 or, as we'll do here, give the
mainbody layer a value of -1 while leaving the
menutab on layer 1.

Z-index works in conjunction with the
position element. If you don't tell the browser
whether your positioning is relative, static,
absolute, fixed or inherited, your stack won't be
rendered properly. Therefore, we need to decide
what the browser should use as the point of
reference when positioning each element.

In the case of the mainbody layer, it's the
document body. We're going to set this to start
at the very top of the browser window with a
top margin of Opx; by setting the mainbody layer
to ‘absolute’ and its top to 30px, we can be
absolutely certain that the mainbody will leave a
gap of exactly 30 pixels at the top of the browser
window. This is sufficient room to display the
tab of our panel, which is always visible, even
when the panel is hidden — without the tab
fouling the page contents.

We want to position the panel in relation
to the browser window and not the page. If
we did position it in relation to the page, it
would disappear as soon as the page was scrolled
to read any excess body content that didn't fit
within the browser window. By anchoring the
panel to the browser window, it will ignore
any scrolling.

ISSUE 285 * COMPUTER SHOPPER * NOVEMBER 2011

Teft: 20px;
}

As you can see, the menutabcontents layer
has been padded to keep the contents away
from the very edge of the panel and improve
its appearance.

CHANGING YOUR POSITION

The page is starting to take shape. We can now
see the panel tab hanging down below the top
edge of the browser, and its contents are hidden
because they have been moved up by the
negative top margin value to a position above
the browser's viewable area.

To get the tab to roll down, we need to use
the :hover class variable. This is often used to
define how a link should change when a site
visitor hovers their mouse across it. You might,
for example, want to remove the underlining
from the links on your pages to make them less
obvious, but have them reappear when the
visitor hovers their mouse across them.

In this case, we don't want to change the
styling of an element; we just want to change its
position. So we'll add a new :hover-specific class
that's attached to the menutab layer that
normalises its position:

{menutab:hover {
margin-top: O0px;
}

lines to the styling of the menutab layer:

-webkit-transition-duration: 0.5s;
-moz-transition-duration: 0.5s;
-ms-transition-duration: 0.5s;
transition-duration: 0.5s;

Save your changes and then reload your page.
When you move your pointer over the tab and
away again, you'll see that the panel animation
is now a smooth slide into view, then back off
the edge of the browser window again.

APPLYING EFFECTS ELSEWHERE

The key to achieving a realistic result in all
animation tasks is to control the speed at

which the motion completes. When using this
technique elsewhere, the one consideration that
should remain uppermost in your mind, beyond
the start and end position of your assets, is the
speed at which the assets should transition from
one state to the other. Master this, and you will
afford your site a degree of polish that puts it
several steps ahead of the competition. &=

GET STARTED WITH JQUERY

Create dynamic, interactive web pages
with ease using jQuery.

