Dérivabilité – Primitives d'une fonction continue

Théorème de Rolle - Théorème des accroissements finis

I-Dérivabilité et continuité en un point :

Théorème:

- Si f est dérivable en x_0 alors la fonction f est continue en x_0 .
- ullet Si f est dérivable sur un intervalle I alors la fonction f est continue sur I.

Attention!

La réciproque de ce théorème est fausse :

Contre-exemple:

La fonction $f: x \mapsto |x|$ est continue en 0 et non dérivable en 0.

$$(f'_d(0) = 1 \text{ et } f'_g(0) = -1)$$

Démonstration :

Supposons que f est dérivable en x_0 donc : $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = l$ avec $l \in \mathbb{R}$

Posons :
$$\varepsilon(h) = \frac{f(x_0+h)-f(x_0)}{h} - l$$
 .On a : $\lim_{h\to 0} \varepsilon(h) = 0$ et :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon(h)$$
. D'où: $\lim_{h\to 0} f(x_0 + h) = f(x_0)$

c.à.d. f est continue en x_0 .

II-Dérivée de la composée de deux fonctions dérivables

Théorème

- Si f est dérivable en x_0g est dérivable en $f(x_0)$ alors la composée $g\circ f$ est dérivable en x_0 et on a : $(g\circ f)'(x_0)=f'(x_0)\times g'[f(x_0)]$
- Si f est dérivable sur un intervalle I et g est dérivable sur f(I) alors la composée $g \circ f$ est dérivable sur et on a : $(g \circ f)' = f' \times (g' \circ f)$

III-Dérivée de la fonction réciproque d'une fonction dérivable

1-Théorème:

Soit f une fonction continue et strictement monotone sur un intervalle I et x_0 un élément de I.

1- Si f est une fonction dérivable en un point x_0 et $f'(x_0) \neq 0$ alors la fonction réciproque f^{-1} de f est dérivable au point $y_0 = f(x_0)$ et on a :

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

2-Sif est une fonction dérivable sur intervalle I de \mathbb{R} et si f' ne s'annule pas sur I alors la fonction réciproque f^{-1} de f est dérivable sur l'intervalle J = f(I) et on a :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Démonstration:

Supposons que dérivable en x_0 et $f'(x_0) \neq 0$; et étudions la limite : $\lim_{y \to y_0} \frac{f(y) - f(y_0)}{y - y_0}$

Posons : $x = f^{-1}(y)$.

Comme f^{-1} est continue en y_0 alors $\lim_{y \to y_0} f(y) = f(y_0) = x_0$

d'où :
$$\lim_{y \to y_0} \frac{f(y) - f(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} Cqfd.$$

Exemple résolu :

Enoncé:

- 1) Montrer que la fonction $f: x \mapsto 2x x^2$ est une bijection de]1; $+\infty$ [vers un intervalle I à déterminer.
- 2) Montrer que sa réciproque f^{-1} est dérivable sur J
- 3) Calculer f(2) et calculer $(f^{-1})'(0)$
- 4) Calculer $(f^{-1})'(-3)$

Solutions:

- 1) La fonction $f: x \mapsto 2x x^2$ est une bijection de $]1; +\infty[\text{vers } J =]-\infty; -1[$
- 2) Et f est dérivable sur 1; $+\infty$ [et $\forall x \in]1$; $+\infty$ [: $f'(x) = 2(1-x) \neq 0$

Donc sa réciproque f^{-1} est dérivable sur $]-\infty$; -1[.

3)
$$f(2) = 0$$
 et $(f^{-1})'(0) = \frac{1}{f'(2)} = -\frac{1}{2}$

4) On a:
$$(f^{-1})'(-3) = \frac{1}{f' \circ f^{-1}(-3)}$$
. On doit calculer $f^{-1}(-3)$

$$f^{-1}(-3) = x \Leftrightarrow f(x) = -3 \Leftrightarrow x^2 - 2x - 3 = 0 \Leftrightarrow (x = 3oux = -1); (\Delta = 16)$$

Or
$$-1 \notin]1; +\infty[$$
 donc $f^{-1}(-3) = 3$ d'où $(f^{-1})'(-3) = \frac{1}{f'(3)} = -\frac{1}{4}$

2-Dérivée de la fonction $x \mapsto \sqrt[n]{x}$ et conséquences :

Propriétés:

Soient $n \in \mathbb{N} - \{0; 1\}$ et $r \in \mathbb{Q}^*$

-la fonction $f: x \mapsto \sqrt[n]{x}$ est dérivable sur $]0; +\infty[$ et on a :

$$\forall x > 0: f'(x) = \frac{1}{n} x^{\frac{1}{n} - 1} = \frac{1}{n \sqrt[n]{x}^{n-1}}$$

-Si u est une fonction dérivable et strictement positive sur intervalle I de \mathbb{R} alors les fonctions $\sqrt[n]{u}$ et u^r sont dérivables sur I et on a : $(\sqrt[n]{u})' = \frac{u'}{n\sqrt[n]{u}^{n-1}}et(u^r)' = ru'u^{r-1}$

Démonstration:

Soit $y_0 \in \mathbb{R}^{+*}$ et $x_0 = \sqrt[n]{y_0} \in \mathbb{R}^{+*}$.la fonction $f: x \mapsto \sqrt[n]{x}$ est dérivable en x_0 et $f'(x_0) = nx_0^{n-1} \neq 0$ donc la fonction $f^{-1}: y \mapsto \sqrt[n]{y}$ est dérivable en y_0 et on a : $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{nx_0^{n-1}} = \frac{1}{n\sqrt[n]{y_0}} = \frac{1}{n\sqrt[n]{y_0}}$

3- Dérivée de la fonction Arctangente

Propriétés

-La fonction $x \mapsto \arctan x$ est dérivable sur \mathbb{R} et on $a : \forall x \in \mathbb{R} : \arctan'(x) = \frac{1}{1+x^2}$

-Si u est une fonction dérivable sur intervalle I alors la fonction $f: x \mapsto arctan[u(x)]$ est dérivable sur I et on a : $\forall x \in \mathbb{R}$: $f'(x) = \frac{u'(x)}{1 + [u(x)]^2}$

Démonstration :

Soit $y_0 \in \mathbb{R}$ et $x_0 = \arctan y_0 \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. la fonction $f: x \mapsto \tan x$ est dérivable en x_0 et $\tan' x_0 = 1 + \tan^2 x_0 = \frac{1}{\cos^2 x_0} \neq 0$ donc la fonction $f^{-1}: y \mapsto \arctan y$ est dérivable en y_0 et on a :

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{1 + \tan^2 x_0} = \frac{1}{1 + y_0^2}$$

Exercice:

Montrer que : $\forall x \in \mathbb{R}^*$: $\arctan x + \arctan \frac{1}{x} = sgn(x) \frac{\pi}{2}$

Avec:
$$sgn(x) = \begin{vmatrix} +1 & si & x > 0 \\ -1 & si & x < 0 \end{vmatrix}$$

(On considérera la fonction $g: x \mapsto \arctan x + \arctan \frac{1}{x}$ et on montrera que c'est une fonction dérivable sur les 2 intervalles $]-\infty$, 0[et]0, $+\infty[$ de dérivée nulle et on calculera la constante sur chaque intervalle en utilisant des valeurs bien choisies)

IV-Primitives d'une fonction continue

1-Définition:

Soit f une fonction continue sur un intervalle I.

Dire qu'une fonction F est une primitive de f sur I signifie que :

- F est dérivable sur I
- et $\forall x \in I: F'(x) = f(x)$

Exercices:

1-Donner une primitive sur $\mathbb R$ de chacune des fonctions :

$$f: x \mapsto 3 - 2x$$
; $g: x \mapsto \sin x$; $h: x \mapsto x^2 + 3\cos x$

2-Montrer que la fonction $F: x \mapsto \frac{2}{\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}}$ est une primitive sur \mathbb{R} de la fonction $f: x \mapsto \frac{1}{x^2+x+1}$

2-Théorème :(admis)

Toute fonction continue sur un intervalle I admet des primitives sur I

3.Théorème:

Soit f est une fonction continue sur un intervalle I.

Si F est une primitive de f sur I, alors f admet une infinité de primitives sur I. Toute autre primitive de f sur I est définie par :

$$G(x) = F(x) + k \text{ où } k \text{ est une constante réelle.}$$

En particulier, si $x_0 \in I$ et y_0 est un réel quelconque, alors il existe une unique primitive G de f sur I telle que : $G(x_0) = y_0$

Exercice:

Trouver la primitive F de la fonction $f: x \mapsto 2x - \frac{1}{x^2} + \frac{1}{2\sqrt{x}} - 1$ sur]0, $+\infty$ [qui s'annule au point $x_0 = 1$

4- Propriétés:

Soient a; b deux nombres réels, et I un intervalle.

Si f et g sont deux fonctions continues sur I admettant successivement pour primitives F et G sur I; alors la fonction aF + bG est une primitive de la fonction af + bg

Exemple:

Une primitive de la fonction $f: x \mapsto 3\cos x - 2\sin x$ sur \mathbb{R} est $F: x \mapsto 3\sin x + 2\cos x$

5-Primitives et dérivées

Soit u une fonction dérivable sur I; $r \in \mathbb{Q}$

Fonction f	u'u ^r	$\frac{u'}{u^2}$	$\frac{u'}{\sqrt{u}}$	$\frac{u'}{1+u^2}$	$u'.(v'\circ u)$	u'(ax+b)
Primitives de f	$\frac{u^{r+1}}{r+1} + c$	$-\frac{1}{u}+c$	$2\sqrt{u} + c$	Arc tan u	v o u	$\frac{1}{a}u'(ax+b)$
Conditions	(1)	$u \neq 0$	u > 0		(2)	(3)

(1):
$$u \neq 0$$
 si $r \neq -1$; $u > 0$ si $r \in \mathbb{Q} - \mathbb{Z}$

(2): v est une fonction dérivable sur un intervalle J tel que $u(I) \subset J$

$$(3): \forall x \in I: ax + b \in I$$

Exemples:

Donner une primitive de chaque fonction :

$$a. f: x \mapsto \frac{1}{x^2} \left(\frac{1}{x} - 1\right)^9 sur \mathbb{R}^{+*}$$

$$b. f: x \mapsto x\sqrt[3]{x^2 - 1} sur 1; +\infty[$$

$$c. f: x \mapsto \frac{\cos x}{1 + \sin^2 x} sur \mathbb{R}$$

$$d. f: x \mapsto \sin 2x - \cos 3x + \tan^2 4x$$

5-Primitives des fonctions usuelles :

Soit $r \in \mathbb{Q}^* - \{-1\}$; $a \in \mathbb{R}^*$. F est une primitive d'une fonction f sur un *intervalle* I convenable.

f(x)	0	λ	x ^r	$\frac{1}{x^2}$	$\frac{1}{x^r}$	$\frac{1}{\sqrt{x}}$	$\frac{1}{1+x^2}$	cos x	sin x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
F(x)	С	λχ	$\frac{x^{r+1}}{r+1}$		$\frac{-1}{(r-1)x^{r-1}}$	$2\sqrt{x}$	Arc tan x	sin x	- cosx	tan x
I	\mathbb{R}	\mathbb{R}	(1)	$n \ge 2$	$\mathbb{R}^{*+}ou\mathbb{R}^{*-}$	\mathbb{R}_+^*	\mathbb{R}	\mathbb{R}	\mathbb{R}	(2)

$$(1): L'intervalle\ I\ est\ \mathbb{R}\ si\ r\in IN^*\ ; \quad \mathbb{R}_+^*\ ou\mathbb{R}_-^*\ si\ r\in \mathbb{Z}^{-*}-\{-1\}\ ; \mathbb{R}_+^*\ Si\ r\in \mathbb{Q}-\mathbb{Z}$$

$$(2): I = \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[avec \ k \in \mathbb{Z}$$

V-Théorèmes de Rolle et des accroissements finis

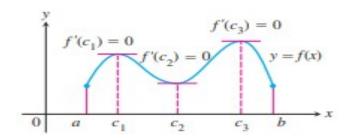
1-Théorème de Rolle :

Soient a et b deux réels tels que a < b et f une fonction numérique.

Si:
$$\begin{cases} fest continue sur[a, b] \\ fest dérivable sur]a, b[alors $\exists c \in]a, b[: f'(c) = 0 \\ f(a) = f(b) \end{cases}$$$

Interprétation graphique :

 C_f admet au moins une tangente horizontale entre deux points d'ordonnées égales. Le nombre c pour lequel f'(c) = 0 n'est pas nécessairement unique.



Preuve:

Si
$$\forall x \in [a, b]$$
: $f(x) = f(a) = f(b)$ alors $\forall x \in]a, b[: f'(x) = 0$

Sinon
$$f([a,b]) = [m,M] \operatorname{car} f \operatorname{est} continues ur[a,b] \operatorname{avec} m \neq f(a) \operatorname{ou} M \neq f(a)$$
.

Par exemple $m \neq f(a)$.On a donc $\exists c \in [a, b[: f(c) = m]$

Or f est dérivable en c. Or m est un minimum de f donc : f'(c) = 0

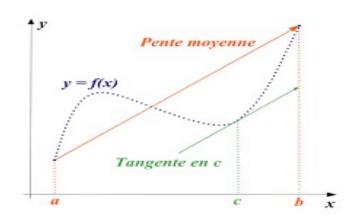
2- Théorème des accroissements finis (TAF)

Soient a et b deux réels tels que a < b et f une fonction numérique.

Si :
$$\begin{cases} fest continue sur[a,b] \\ fest dérivable sur]a,b \end{cases} \text{ alors } \exists c \in]a,b[:f(b)-f(a)=(b-a)f'(c)$$

Interprétation graphique :

Étant donné une corde reliant deux pointsA(a, f(a)), B(b, f(b)) sur le graphe de f, on peut trouver entre A et B une tangente au graphe qui est parallèle à la corde [A, B] de coefficient directeur : $f'(c) = \frac{f(b) - f(a)}{b - a}$



Preuve:

Posons : $\phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. On a ϕ est continue sur [a,b], dérivable sur]a,b[et $\phi(a) = \phi(b)$ donc d'après le th.de Rolle :

$$\exists c \in]a, b[: \phi'(c) = 0.\text{etc...}$$

3-Inégalité des accroissements finis :

Théorèmes:

Soit f une fonction continue sur [a, b], dérivable sur [a, b].

• S'il existe m et M des réels tels que :

$$\forall x \in]a, b[, m \le f'(x) \le M \ alors : m \le f(b) - f(a) \le M$$

• Si k est un réel positif tel que :

$$\forall x \in]a, b[, |f'(x)| \le k \ alors \ |f(b) - f(a)| \le k \ |b - a|.$$

(L'hypothèse a < b dans ce cas n'est pas nécessaire)

(La fonction est alors appelée fonction lipschitzienne de rapport k, et dans le cas où $0 \le k < 1$ elle est contractante)

4-Monotonie d'une fonction numérique et dérivabilité :

Théorème:

Soit f une fonction dérivable sur un intervalle I de IR. On a :

- $(f \ est \ constante \ sur \ I) \Leftrightarrow (\forall x \in I : f'(x) = 0)$
- $(f \ est \ croissante \ sur \ I) \Leftrightarrow (\forall x \in I : f'(x) \ge 0)$

Preuve: Utiliser TAF.

Remarques:

- $(\forall x \in I : f'(x) > 0)$ ⇒ (f est strictement croissante sur I)
- La fonction f est strictement croissante sur un intervalle I si et seulement si f ' est strictement positive sur I sauf éventuellement en un **nombre fini** d'éléments de I où elle s'annule.