Etude des fonctions numériques (Résumé)

Terminale Sciences Mathématiques

Dans tout ce qui suit f une fonction numérique d'une variable réelle x et C_f sa courbe représentative dans un repère cartésien $(0, \vec{i}, \vec{j})$ du plan.

I. Tangentes et demi-tangentes à d'une courbe représentative d'une fonction numérique

- Si f est dérivable en un point a alors la courbe de f admet une tangente au point A(a,f(a)) d'équation réduite :

$$y = f'(a)(x - a) + f(a)$$

- Si f est dérivable à droite en a alors la courbe de f admet une demi-tangente au point A(a,f(a)) d'équation réduite :

$$\begin{cases} y = f'_d(a)(x - a) + f(a) \\ x \ge a \end{cases}$$

- Si f est dérivable à gauche en a alors la courbe de f admet une demi-tangente à au point A(a,f(a)) d'équation réduite :

$$\begin{cases} y = f'_g(a)(x - a) + f(a) \\ x \le a \end{cases}$$

-Si $f'(a) = \mathbf{0}$ alors la courbe de f admet au point A(a, f(a)) une tangente (horizontale) parallèle à l'axe des abscisses (d'équation y = f(a))

-Si Une des limites $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}$ ou $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a}$ est infinie ($\pm\infty$) alors la courbe de f admet au point A(a,f(a)) une **demi-tangente verticale** (parallèle à l'axe des ordonnées) d'équation :

$$\begin{cases} x = a \\ y \ge f(a) \end{cases} ou \begin{cases} x = a \\ y \le f(a) \end{cases} \text{ et définie par :}$$

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \begin{cases} +\infty \dots & \text{dirigée vers le haut } \uparrow \land \\ -\infty \dots & \text{dirigée vers le bas } \downarrow \hookrightarrow \end{cases}$$

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \begin{cases} -\infty \dots & \text{dirigée vers le haut } \land \uparrow \\ +\infty \dots & \text{dirigée vers le bas } \leftrightarrow \downarrow \end{cases}$$

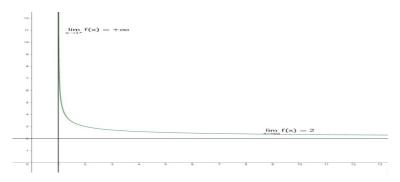
II. Etude de la nature des branches infinies d'une courbe représentative Cf d'une fonction f

1. Définition

Une branche infinie d'une courbe représentative C_f d'une fonction f apparaît dès lors que l'une au moins des coordonnées d'un point M(x,y=f(x)) de C_f , x ou y=f(x) tend vers l'infini.

2. Plan d'étude

Soient a, b des réels. On a les propriétés suivantes :



 \Leftrightarrow Si $\lim_{x\to+\infty} f = \pm \infty$; on calcule $\lim_{x\to+\infty} \frac{f(x)}{x}$ (même étude si x tend vers $-\infty$)

$\lim_{x \to +\infty} \frac{f(x)}{x} =$	±∞	Cf admet une branche parabolique de direction l'axe des ordonnées (ou encore l'axe des ordonnées est une direction asymptotique pour Cf)		
	0	Cf admet une branche parabolique suivant l'axe des abscisses (ou encore l'axe des abscisses est une direction asymptotique pour Cf)		
	$a \neq 0$	$\lim_{x\to+\infty}(f(x)-ax)=$	±∞	Cf admet une branche parabolique de direction la droite d'équation y=ax
			b	la droite d'équation y=ax+b est une asymptote (oblique) à la courbe de f

Et on a : si la limite de f est infinie en $+\infty$, la propriété :

$$\left(\begin{array}{c} \text{La droite d'équation y=ax+b} \\ \text{est une asymptote à la courbe de } f \ en \ +\infty \end{array} \right) \Leftrightarrow \lim_{x \to +\infty} (f(x) - (ax + b)) = 0$$

<u>Remarque :</u>

Si a \neq 0 l'asymptote d'équation y=ax+b est dite une asymptote oblique à C_f . (Non parallèle aux axes de coordonnées)

3. Position relative d'une courbe d'une fonction f par rapport à une droite (Δ) :

Pour étudier la position relative d'une courbe d'une fonction f par rapport à une droite (Δ) d'équation : $y = \alpha x + b$, il suffit d'étudier le signe de :

$$f(x) - (ax + b)$$

Etude des fonctions numériques à une variable réelle. Niveau Bac. Sciences. Pr. OUBIJI

III. Concavité d'une courbe de fonction - Points d'inflexion d'une courbe

1. Définitions

Soit f une fonction $\underline{d\acute{e}rivable}$ sur un intervalle ouvert I et $A(x_0, f(x_0))$ un point de C_f .

- La courbe C_f est « convexe» ou a une concavité dirigée vers les ordonnées positives si et seulement si C_f est au-dessus de chacune de ses tangentes
- \triangleright La courbe C_f est « concave » ou a une concavité dirigée vers les ordonnées négatives si et seulement si sa C_f est en dessous de chacune de ses tangentes.
- Le point $A(x_0, f(x_0))$ est dit un point d'inflexion de c_f signifie que la courbe c_f change de concavité en A, c.à.d. la tangente en A traverse c_f en A.

2. Théorème

Si f est une fonction <u>deux fois dérivable</u> sur un intervalle ouvert I alors :

IV. Eléments de symétrie :

7héorèmes :

-Dans un repère orthogonal, La droite d'équation x = a est un axe de symétrie de Cf si et seulement si :

$$\forall x \in D_f$$
: $2a - x \in D_f$ et $f(2a - x) = f(x)$

ou encore:

$$\forall x \in D_f : a + x \in D_f, a - x \in D_f \ et \ f(a + x) = f(a - x)$$

-Dans un repère *cartésien*, le point $\Omega(a,b)$ est un centre de symétrie de *Cf si et seulement si* :

$$\forall x \in D_f : 2a - x \in D_f \ et \ f(2a - x) = 2b - f(x)$$

ou encore

$$\forall x \in D_f : a + x \in D_f, a - x \in D_f \ et \ f(a + x) + f(a - x) = 2b$$

V. Fonction périodique :

<u> 1.Définition :</u>

On dit qu'une fonction numérique f est périodique s'il existe un réel T > 0 tel que :

$$(\forall x \in \mathbb{R}: x \in D_f \Leftrightarrow x + T \in D_f) \ et \ (\forall x \in D_f: f(x + T) = f(x))$$

2. Interprétation graphique :

Propriété:

Soit f une fonction numérique est périodique de période T et C_0 sa courbe représentative sur *l'ensemble* $D_0 = [a, a + T[\cap D_f.$

Pour tout $n \in \mathbb{Z}$ on désigne par C_n la courbe représentative de f sur l'ensemble $D_n = [a + nT, a + (n + 1)T] \cap D_f$ et on a:

 C_n est l'image de C_0 par la translation de vecteur $nT\vec{\iota}$, et on a:

$$Cf = \bigcup_{n \in \mathbb{Z}} C_n$$