Limite d'une suite numérique

Niveau: 2ème Bac.Sc.Maths.Fr

I-Rappels de la classe antérieure (1ère année Sciences mathématiques) :

1.Suite majorée, minorée, bornée

- Une suite (u_n) est dite majorée ssi $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : u_n \leq M$
- Une suite (u_n) est dite minorée ssi $\exists m \in \mathbb{R} : \forall n \in \mathbb{N} : u_n \geq m$
- Une suite (u_n) est dite bornée ssi elle est majorée et minorée
- Une suite (u_n) est bornée ssi $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |u_n| \leq M$

2. Sens de variation d'une suite

- Une suite (u_n) est dite croissante ssi : $\forall n \in \mathbb{N} : u_{n+1} \ge u_n$
- Une suite (u_n) est dite décroissante ssi : $\forall n \in \mathbb{N} : u_{n+1} \leq u_n$
- Une suite (u_n) est dite constante ssi : $\forall n \in \mathbb{N}$: $u_{n+1} = u_n$

3.Exemples de suites

a. Suite arithmétique

- Une suite (u_n) est dite arithmétique de raison r ssi : $\forall n \in \mathbb{N}$: $u_{n+1} = u_n + r$
- Si (u_n) est une suite arithmétique de raison r alors :

$$-\forall (n,p) \in \mathbb{N}^2$$
: $u_n = u_p + (n-p)r$

$$- \forall (n,p) \in \mathbb{N}^2/n > p: u_p + u_{p+1} + ... + u_n = (n-p+1) \frac{u_p + u_n}{2}$$

a, betc trois termes consécutifs d'une suite arithmétique ssi $b = \frac{a+c}{2}$

b. Suite géométrique

- Une suite (u_n) est dite géométrique de raison q ssi : $\forall n \in \mathbb{N}$: $u_{n+1} = qu_n$

- Si (u_n) est une suite géométrique de raison q alors :

$$-\forall (n,p) \in \mathbb{N}^2$$
: $u_n = u_p q^{n-p}$

$$- \forall (n,p) \in \mathbb{N}^2/n > p: u_p + u_{p+1} + \ldots + u_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$$

a, betc trois termes consécutifs d'une suite géométrique ssi $b^2 = ac$

Exercices de révision

Exercice 1

Soit la suite récurrente (u_n) définie par : $\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}; u_{n+1} = \sqrt{6 + u_n} \end{cases}$

- 1) Démontrer par récurrence que la suite est majorée par 3.
- 2) Démontrer que la suite (u_n) est strictement croissante.
- 3) Montrer que $\forall n \in \mathbb{N}^*$; $u_n > 0$

Exercice 2:

On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 2$$
 et $u_{n+1} = \frac{5u_n - 1}{3 + u_n}$ et $v_n = \frac{1}{u_n - 1}$ pour tout $n \in \mathbb{N}$

- 1) Montrer que la suite (v_n) est arithmétique
- 2) Calculer v_n , u_n et $S_n = \sum_{k=0}^n v_k$ en fonction de n pour tout $n \in \mathbb{N}$

Exercice 3:

On considère la suite (u_n) définie par : $u_0 = 2$ et $u_{n+1} = \frac{3}{4}u_n - 1$ pour tout $n \in \mathbb{N}$

- 1) Montrer par récurrence que $\forall n \in \mathbb{N} : u_n > -4$
- 2) Montrer que la suite (u_n) est décroissante
- 3) Montrer que la suite (u_n) converge.
- 4) On considère la suite (v_n) définie par : $v_n = u_n + 4$ pour tout entier naturel n
- a) Montrer que la suite (v_n) est géométrique de raison $q = \frac{3}{4}$
- b) Calculer v_n puis u_n en fonction de n pour tout entier naturel n
- c) Calculer les sommes $S_n = \sum_{k=0}^n v_n$, puis $S_n' = \sum_{k=0}^n u_k$ en fonction de n pour tout entier naturel n.

II- Convergence d'une suite :

Activité:

Soit la suite numérique (u_n) définie par $\forall n \in \mathbb{N} : u_n = \frac{2n-3}{n+1}$

Soit ε un nombre réel strictement positif.

Déterminer en fonction de ε un entier naturel n_0 tel que : $\forall n \geq n_0$: $|u_n - 2| < \varepsilon$

1.Définition:

Dire qu'un réel l est la limite d'une suite numérique (u_n) ou que signifie que tout intervalle ouvert de centre l contient tous les termes de la suite à partir d'un indice.

$$\lim_{n\to+\infty} u_n = l \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} / \forall n \ge n_0 : |u_n - l| < \varepsilon$$

2. Théorème et définition :

Si une suite numérique (u_n) admet une limite finie l alors Cette limite est unique et on dit que la suite (u_n) converge vers l et que la suite (u_n) est convergente et on écrira alors : $\lim_{n\to+\infty} u_n = l$

Preuve:

Raisonnons par l'absurde :

On suppose qu'une suite (u_n) admet 2 limites **distinctes** l_1 et l_2 .

Posons par exemple : $\varepsilon = \frac{|l_1 - l_2|}{4} > 0$. On a alors :

$$\exists n_1 \in \mathbb{N}/\forall n \geq n_1 : |u_n - l_1| < \frac{|l_1 - l_2|}{4}$$

$$\exists n_2 \in \mathbb{N}/\forall n \ge n_2 : |u_n - l_2| < \frac{|l_1 - l_2|}{4}$$

Soit $n_0 = \max(n_1, n_2)$

En utilisant l'inégalité triangulaire $|x + y| \le |x| + |y|$, on a :

$$\forall n \ge n_0: |l_1 - l_2| = |(u_n - l_1) - (u_n - l_2)| \le |u_n - l_1| + |u_n - l_2|$$

D'où:

$$\forall n \geq n_0 : |l_1 - l_2| \leq \frac{|l_1 - l_2|}{2} \text{ .D'où } : 1 \leq \frac{1}{2} : \text{C'est absurde. Donc } l_1 = l_2.$$

3. Propriété:

Toute suite convergente est bornée. (La réciproque est fausse)

Preuve:

Utiliser la définition de la limite

Contre-exemple:

La suite définie par $\forall n \in \mathbb{N} : u_n = (-1)^n$ est bornée : $\forall n \in \mathbb{N} : |u_n| \leq 1$, mais ne converge pas car elle prend les valeurs 1 et - 1 en alternance.

4.Théorème :(Admis)

Toute suite croissante et majorée est convergente

Toute suite décroissante et minorée est convergente

5.composée d'une suite par une fonction :

Théorème:

Si (u_n) est une suite qui converge vers un réel l et si f est une fonction continue en l alors la suite (v_n) définie par $v_n = f(u_n)$ pour tout $n \ge n_0$ converge vers f(l)

Preuve: Utiliser la définition de la limite

Exercice:

Montrer que la suite (u_n) définie par $u_n = \arctan\left(\frac{n\sqrt{3}-1}{n+1}\right)$ converge et calculer sa limite.

6. Théorèmes de comparaison :

a. Limite d'une suite et ordre :

Propriété:

Soit (u_n) et (v_n) deux suites numériques convergentes

$$-\operatorname{Si} \left\{ \begin{aligned} \forall n \geq n_0 &: u_n > 0 \\ et \lim_{n \to +\infty} u_n = l \end{aligned} \right. \ alors \ l \geq 0$$

$$-\operatorname{Si} \left\{ \begin{aligned} &\forall n \geq n_0 : u_n < v_n \\ &et \underset{n \rightarrow +\infty}{\lim} u_n = let \underset{n \rightarrow +\infty}{\lim} v_n = l' \end{aligned} \right. \text{ alors } l \leq l'$$

b. Critères de convergence

Théorème des Gendarmes :

i. Si (u_n) , (v_n) et (w_n) sont des suites numériques telles que $\forall n \geq n_0 : v_n < u_n < w_n$ et si (v_n) et (w_n) convergent vers une même limite l alors (u_n) converge vers l

ii. Si (u_n) et (v_n) sont deux suites numériques telles que $\forall n \geq n_0 : |u_n - l| < v_n$ et si (v_n) converge vers 0 alors (u_n) converge vers l

Exercice d'application:

Montrer que les suites numériques définies par :

$$\forall n \in \mathbb{N}: u_n = \frac{(-1)^{n+1}}{n+2} \quad \text{,} \qquad v_n = \, -1 + \frac{\cos n}{n+1} \quad \text{,} \quad w_n = \frac{\sin n}{1+\sqrt{n}}$$

convergent et déterminer la limite de chacune.

III. Limite infinie d'une suite numérique :

1. Définitions:

Soit (u_n) une suite numérique. On définit :

$$\lim_{n\to +\infty} u_n = +\infty \Leftrightarrow \forall A>0; \exists n_0\in \mathbb{N}/\forall n\geq n_0: u_n>A$$

$$\lim_{n\to +\infty} u_n = -\infty \Leftrightarrow \forall A>0; \exists n_0\in \mathbb{N}/\forall n\geq n_0: u_n<-A$$

Une suite qui n'a pas de limite ou dont la limite n'est pas finie est dite une suite divergente.

2. Limite de la suite $(n^{\alpha})_{n \in \mathbb{N}^*}$ ou $\alpha \in \mathbb{Q}^*$

Propriété:

Soit
$$\alpha \in \mathbb{Q}^*$$
.On a :

Si
$$\alpha > 0$$
 alors $\lim_{n \to +\infty} n^{\alpha} = +\infty$

et si
$$\alpha < 0$$
 alors $\lim_{n \to +\infty} n^{\alpha} = 0$

Preuve:

Si
$$\alpha \in \mathbb{N}^*$$
, alors $\forall n \in \mathbb{N} : n^{\alpha} \ge n$ et on a $\lim_{n \to +\infty} n = +\infty...$

Si
$$\alpha \in \mathbb{Q}^{+*}$$
 alors $\alpha = \frac{p}{q}$ avec : $(p,q) \in \mathbb{N}^{*2}$ et on a : $n^{\alpha} = \sqrt[q]{n^p}$...

Si
$$\alpha \in \mathbb{Q}^{-*}$$
 alors $-\alpha \in \mathbb{Q}^{+*}$ et on a : $n^{\alpha} = \frac{1}{n^{-\alpha}}$...

3. Théorèmes:

- i. Toute suite croissante et non majorée a pour limite $+\infty$
- ii. Toute suite décroissante et non minorée a pour limite $-\infty$

Exercice d'application:

Etudier la monotonie de la suite définie par : $\forall n \in \mathbb{N} : u_n = n^2 - 2n$; et montrer par l'absurde qu'elle est non majorée en déduire sa limite.

4. Théorèmes de comparaison :

Théorème:

$$i. \text{ Si } \begin{cases} \forall n \geq n_0 \colon u_n < v_n \\ \lim_{n \to +\infty} v_n = -\infty \end{cases} alors \lim_{n \to +\infty} u_n = -\infty$$

ii. i. Si
$$\begin{cases} \forall n \geq n_0 : u_n > v_n \\ \lim_{n \to +\infty} v_n = +\infty \end{cases} alors \lim_{n \to +\infty} u_n = +\infty$$

Exercice d'application:

Déterminer la limite de la suite définie par : $\forall n \in \mathbb{N}^* : u_n = n - (-1)^n \sin\left(\frac{1}{n}\right)$

IV. Opérations sur les limites des suites :

Propriété

Si deux suites numériques (u_n) et (v_n) sont convergentes, alors :

 \triangleright Les suites $(u_n + v_n)$ et $(u_n v_n)$ convergent et on a :

$$\lim_{n\to+\infty}(u_n+v_n)=\lim_{n\to+\infty}u_n+\lim_{n\to+\infty}v_n\text{ et }\lim_{n\to+\infty}(u_nv_n)=\lim_{n\to+\infty}u_n\times\lim_{n\to+\infty}v_n$$

Figure Et si $\lim_{n\to +\infty} v_n \neq 0$, alors la suite $\left(\frac{u_n}{v_n}\right)$ converge et on a :

$$\lim_{n \to +\infty} \left(\frac{u_n}{v_n} \right) = \frac{\lim_{n \to +\infty} u_n}{\lim_{n \to +\infty} v_n}$$

Remarque

Les propriétés des extensions des opérations sur les limites des fonctions $f: x \mapsto f(x)$ lorsque $x \to +\infty$ restent valables pour les limites des suites numériques.

V. Théorèmes de comparaison :

1. Limite d'une suite et ordre :

Propriétés:

Soit (u_n) et (v_n) deux suites numériques convergentes

$$-\mathrm{Si} \left\{ \begin{aligned} \forall n \geq n_0 &: u_n > 0 \\ et \lim_{n \to +\infty} u_n = l \end{aligned} \right. \ alors \ l \geq 0$$

$$-\mathrm{Si} \left\{ \begin{aligned} &\forall n \geq n_0 \colon u_n < v_n \\ &et \lim_{n \to +\infty} u_n = l \ et \lim_{n \to +\infty} v_n = l' \ \ alors \ l \leq l' \end{aligned} \right.$$

2. Critères de convergence d'une suite :

Propriétés:

Soit (u_n) , (v_n) et (w_n) trois suites numériques convergentes

$$-\mathrm{Si}\left\{ \begin{aligned} &\forall n \geq n_0 \colon v_n \leq u_n \leq w_n \\ &et\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l \end{aligned} \right. \ alors \ la \ suite \ (u_n) \ converge \ et \lim_{n \to +\infty} u_n = l \end{aligned} \right.$$

$$-\mathrm{Si} \left\{ \begin{aligned} \forall n \geq n_0 : |u_n - l| < v_n \\ et \lim_{n \to +\infty} v_n = 0 \end{aligned} \right. \quad alors \ la \ suite \ (u_n) \ converge \ et \quad \lim_{n \to +\infty} u_n = l \end{aligned} \right.$$

VI. Limites de la suite (a^n)

Théorème:

Soit $a \in \mathbb{R}$. On a:

$$Si \ a > 1 \ alors \lim_{n \to +\infty} a^n = +\infty$$

$$Si |a| < 1 \ alors \lim_{n \to +\infty} a^n = 0$$

Si
$$a = 1$$
 alors (a^n) est constante : $\forall n \in \mathbb{N}$: $1^n = 1$

Si
$$a \le -1$$
 alors (a^n) n'a pas de limite

Preuve

- Si a>1 alors en posant $\alpha=a-1>0$ et en utilisant l'inégalité de Bernoulli :

$$(1+\alpha)^n \ge 1 + n\alpha$$

On a:

$$a^n = (1 + (a - 1))^n \ge 1 + n(a - 1)$$

Et comme a-1>0 alors $\lim_{n\to+\infty}1+n(a-1)=+\infty$ d'où $\lim_{n\to+\infty}a^n=+\infty$

- les cas a = 0 et a = 1 sont triviaux.

- Si
$$|a|<1$$
 et $a\neq 0$ alors $\frac{1}{|a|}>1$, d'où $\lim_{n\to +\infty}\left(\frac{1}{|a|}\right)^n=+\infty$

D'où
$$\lim_{n\to+\infty} |a^n| = 0$$
 donc $\lim_{n\to+\infty} a^n = 0$

- Si a=-1 ,la suite définie par $\forall n\in\mathbb{N}:u_n=(-1)^n$ diverge et n'admet aucune limite.
- Si a < -1 alors |a| > 1 et $\lim_{n \to +\infty} |a^n| = +\infty$, mais la suite (a^n) change de signe en alternance, donc elle diverge et n'admet aucune limite.

Exercices d'application:

Etudier la convergence de chacune des suites numériques suivantes :

1)
$$u_n = \left(-\frac{2}{3}\right)^n \sin(\sqrt{n}) = \frac{3^n - 5^n}{3^n + 5^n}$$
 3) $w_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$

VII. Convergence d'une suite récurrente : $u_{n+1} = f(u_n)$

Activité:

- 1.a) Tracer dans un repère orthonormé du plan la droite (Δ): y = x et la courbe de la fonction $f: x \mapsto 5 \frac{4}{x}$ sur l'intervalle]0; 8].
- b) Déterminer f(I) où I = [3; 4] et vérifier que $f(I) \subset I$
- 2) On considère la suite numérique (u_n) définie par :

$$u_0 = 3$$
 et $\forall n \in \mathbb{N}: u_{n+1} = f(u_n)$

- a. Prouver par récurrence que : $\forall n \in \mathbb{N}$; $u_n \in I$
- b. Etudier la monotonie de la suite (u_n) ; en déduire qu'elle converge.
- c. Conjecturer la limite de la suite (u_n) à partir du graphique précédent.
- d. Prouver que $\forall n \in \mathbb{N}: 0 \le 4 u_{n+1} \le \frac{1}{2}(4 u_n)$
- e. En déduire par récurrence que : $\forall n \in \mathbb{N} : 0 \le |4 u_n| \le \left(\frac{1}{2}\right)^n$
- f. En déduire la limite l de la suite (u_n) et vérifier que f(l) = l.

Théorème:

Si (u_n) est une suite convergente définie par la relation de récurrence :

 $u_{n+1} = f(u_n)$ pour tout $n \ge n_0$ et par son premier terme $u_{n_0} \in I$ ou f est une fonction continue sur l'intervalle I tel que $f(I) \subset I$, alors la limite de la suite (u_n) est une solution de l'équation f(x) = x

VIII. Deux suites adjacentes:

Activité:

Soit la fonction f définie sur l'intervalle [0; 2] par :

$$f(x) = \frac{2x+1}{x+1}$$

- 1) Etudier les variations de f et vérifier que $f([0; 2]) \subset [0; 2]$ puis représenter f graphiquement dans un repère orthonormé. Tracer la droite (Δ) : y = x dans le même repère. On prendra 4cm comme unité.
- 2) Résoudre l'équation f(x) = x
- 3) On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 1, v_0 = 2 \ et \ \forall n \in \mathbb{N}; u_{n+1} = f(u_n) \ et \ v_{n+1} = f(v_n)$$

Conjecturer graphiquement la monotonie, la convergence et la limite des 2 suites.

1.Définition:

On dit que deux suites numériques (u_n) et (v_n) sont adjacentes ssi l'une est croissante, l'autre est décroissante et $\lim_{n\to+\infty}(v_n-u_n)=0$

2. Théorème

Deux suites adjacentes sont convergentes et ont la même limite

Preuve à faire par les élèves :

On considère 2 suites numériques adjacentes $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$, telles que (u_n) soit croissante et (v_n) soit décroissante. On pose $\forall n\geq 0$: $w_n=v_n-u_n$

- 1. Prouver que la suite (w_n) est décroissante.
- 2. En déduire que $\forall n \geq 0 : v_n \geq u_n$
- 3. En déduire que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont convergentes et ont la même limite.

Exercices d'application:

- 1) Montrer que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies par : $u_n=-\frac{1}{n+2}$ et $v_n=\frac{1}{n+1}$ sont adjacentes.
- 2) Montrer que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies par :

$$u_n = \sum_{k=0}^n \frac{1}{k!} et v_n = u_n + \frac{1}{n!}$$

sont adjacentes. (Limite commune notée e définissant la fonction exponentielle)