Structures algébriques

Partie I: Généralités

Activités :

- 1) Citer les propriétés des opérations suivantes :
 - a. L'addition, la soustraction et la multiplication dans \mathbb{R} .
 - b. La composition des rotations du plan
- 2) Résoudre dans \mathbb{R} l'équation : $(x^2 1)(x + 2) = (x^2 1)(x 2)$

I. Loi de composition interne :

1.Définition:

Soit E un ensemble. On appelle « loi de composition interne (LCI) sur E » toute application de $E \times E$ dans E:

$$\begin{array}{ccc} E \times E & \longrightarrow & E \\ (x,y) & \longmapsto & x * y \end{array}$$

Un magma est par définition un ensemble muni d'une loi de composition interne.

Exercice d'application:

Pour tous
$$x$$
, $y \in]-1$; 1[: $x * y = \frac{x+y}{1+xy}$

Montrer que * est une loi interne sur]-1; 1[

Exemples de LCI:

. L'addition et la multiplication dans :

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/_{n\mathbb{Z}}$, $F(I,\mathbb{R})$, avec I un intervalle de \mathbb{R}

 $F(I, \mathbb{R})$ est l'ensemble des fonctions numériques à une variable réelle définies sur I.

P : Ensemble des fonctions polynômes à coefficients réels.

- . L'addition dans P_n : Ensemble des fonctions polynômes à coefficients réels de degré $\leq n$ avec $n \in \mathbb{N}^*$
- . L'intersection \cap , la réunion \cup , et la différence symétrique Δ dans P(E) ensemble de toutes les parties d'un ensemble E.

Rappel:

Si A et B sont deux parties d'un ensemble E, alors :

$$A\Delta B = (A - B) \cup (B - A)$$

- . Le PGCD et le PPCM dans \mathbb{N} et \mathbb{Z}
- . La composition des applications dans :
 - R_{Ω} : Ensemble des rotations de même centre Ω
 - H_{Ω} : Ensemble des homothéties de même centre Ω
 - T: Ensemble des translations du plan
- . L'addition et la multiplication dans $M_n(\mathbb{R})$ Ensemble des matrices carrées d'ordre $n \in \{2;3\}$

Dans :
$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} / a, b, c, d \in \mathbb{R} \right\}$$
; on définit :
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix}$$

Et

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$

Exemple:

Soit E =
$$\begin{pmatrix} 1 & 2 & 3 \\ -2 & 3 & -1 \\ 3 & 1 & -2 \end{pmatrix}$$
 et F = $\begin{pmatrix} 4 & 2 & 5 \\ 3 & 1 & 4 \\ 1 & 3 & 6 \end{pmatrix}$

$$E \times F = \begin{pmatrix} 1 \times 4 + 2 \times 3 + 3 \times 1 & 1 \times 2 + 2 \times 1 + 3 \times 3 & 1 \times 5 + 2 \times 4 + 3 \times 6 \\ -2 \times 4 + 3 \times 3 + (-1) \times 1 & -2 \times 2 + 3 \times 1 + (-1) \times 3 & -2 \times 5 + 3 \times 4 + (-1) \times 6 \\ 3 \times 4 + 1 \times 3 + (-2) \times 1 & 3 \times 2 + 1 \times 1 + (-2) \times 3 & 3 \times 5 + 1 \times 4 + (-2) \times 6 \end{pmatrix}$$

$$\Rightarrow E \times F = \begin{pmatrix} 13 & 13 & 31 \\ 0 & -4 & -4 \\ 13 & 1 & 7 \end{pmatrix}$$

Exercices d'application:

On considère dans $M_3(\mathbb{R})$ les matrices :

$$A = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & -1 \end{pmatrix}; B = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & -2 \\ -2 & -1 & 0 \end{pmatrix}; C = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$$

Calculer A + B; B + A; $A \times B$; $B \times A$; $(A \times B) \times C$ et $A \times (B \times C)$

Que remarquez-vous?

2. Partie stable par une LCI, loi induite

Définition:

Soit E un ensemble muni d'une loi de composition interne *. Soit F une partie de E.

« F est stable par * » signifie que :
$$\forall (x, y) \in F^2$$
: $x * y \in F$

Si F est une partie stable par *, alors la restriction de * à F est une loi de composition interne sur F dite « loi induite par * dans F ».

Exemples:

- 1) \mathbb{R}^{+*} est une partie stable de (\mathbb{R} , \times)
- 2) \mathbb{R}^{-*} n'est pas une partie stable de (\mathbb{R} , \times)

Car:
$$-1 \in \mathbb{R}^{-*} et - 2 \in \mathbb{R}^{-*} mais (-1) \times (-2) = +2 \notin \mathbb{R}^{-*}$$

- 3) [0; 1] est une partie stable de (\mathbb{R}, \times)
- 4) [0; 1] n'est pas une partie stable de $(\mathbb{R}, +)$

Car
$$\frac{1}{2} \in [0; 1]$$
 et $\frac{3}{4} \in [0; 1]$ mais $\frac{1}{2} + \frac{3}{4} = \frac{5}{4} \notin [0; 1]$

Exercices d'application:

1) Soit
$$U = \{z \in \mathbb{C}/|z| = 1 \}$$

Montrer que U est une partie stable de (\mathbb{C}, \times)

La partie U est-elle stable dans $(\mathbb{C}, +)$? justifier votre réponse.

2) On munit \mathbb{R} de la loi interne T définie par : x T y = xy - 3x - 3y + 12Montrer que l'intervalle $]3; +\infty[$ est stable dans (\mathbb{R}, T)

3. Propriétés d'une LCI et Eléments particuliers

Définitions et propriétés :

Soit E un ensemble muni d'une loi de composition interne *.

- . «*est commutative » signifie que : $\forall (x, y) \in E^2$: x * y = y * x
- . «*est associative » signifie que : $\forall (x, y, z) \in E^3$: (x * y) * z = x * (y * z)
- . L'élément e de E est un élément « neutre » de (E,*) signifie que :

$$\forall x \in E : x * e = e * x = x$$

Cet élément s'il existe est unique.

Et on a:

(E,*) admet un élément neutre \iff $(\exists! e \in E / \forall x \in E : x * e = e * x = x)$

. L'élément x de E admet : « un symétrique x ' » signifie que :

$$x * x' = x' * x = e$$

On dit alors que « x est symétrisable ».

Si la loi * est associative alors ce symétrique est unique.

. Soit $a \in E$. a est élément absorbant pour la loi * signifie que :

$$\forall x \in E : a * x = x * a = a$$

. Soit $a \in E$.

a est régulier (simplifiable) pour * signifie que :

$$\forall (x,y) \in E^2: \begin{cases} x*a = y*a \\ a*x = a*y \end{cases} \Rightarrow x = y$$

Exemples de référence :

- ightharpoonup Dans $M_2(\mathbb{R})$
 - La loi + est commutative, associative, admet $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ comme élément neutre et toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ admet une matrice symétrique appelée matrice opposée de A et notée : $-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$
 - La loi × n'est pas commutative
 - La loi × est associative, admet $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ comme élément neutre
- ightharpoonup Dans $M_3(\mathbb{R})$
 - La loi + est commutative, associative, admet $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ comme

élément neutre et toute matrice $A = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}$ admet une matrice

symétrique appelée matrice opposée de A et notée :

$$-A = \begin{pmatrix} -a & -b & -c \\ -a' & -b' & -c' \\ -a'' & -b'' & -c'' \end{pmatrix}$$

- La loi × n'est pas commutative
- La loi × est associative, admet $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ comme élément neutre
- Si une matrice A admet une matrice symétrique B pour la loi ×, alors on a :

$$A \times B = B \times A = I$$

La matrice B sera appelée la matrice inverse de A et sera notée A^{-1}

Exercices d'application:

Exercice 1:

On munit \mathbb{R} de la loi interne T définie par : x T y = xy - 3x - 3y + 12

- 1) Montrer que la loi T est commutative et associative
- 2) Montrer que la loi T admet un élément neutre
- 3) Montrer que tout élément de \mathbb{R} est symétrisable pour la loi T.

Exercice 2:

On munit \mathbb{N}^* de la loi interne \bot définie par : $a \bot b = a^b$.

(Le symbole \perp se lit antitruc)

- 1) Montrer que la loi ⊥ n'est ni commutative, ni associative.
- 2) Calculer $a \perp 1$ pour tout $a \in \mathbb{N}^*$.
- 3) La loi ⊥ admet-elle un élément neutre?

5. Théorème:

Soient E un ensemble non vide puis * une loi de composition interne sur E, associative et admetant un élément neutre e.

Soient x et y deux éléments de E. Si x et y sont symétrisables, alors x * y est symétrisable et on a :

$$(x * y)' = y' * x'$$

Exemples:

- Dans $\mathbb{C} : -(z + z') = (-z) + (-z')$
- Dans $\mathbb{C}^* : (z \times z')^{-1} = z^{-1} \times z'^{-1}$

• Dans l'ensemble des bijections d'un ensemble E sur lui-même, la réciproque de $g\circ f$ est $f^{-1}\circ g^{-1}$, c.à.d. :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Exercices d'application:

Vérifier que la matrice $B = \begin{pmatrix} -2 & 5 \\ 3 & -7 \end{pmatrix}$ est la matrice inverse de la matrice $A = \begin{pmatrix} 7 & 5 \\ 3 & 2 \end{pmatrix}$

En déduire que la matrice $A \times B$ est inversible et calculer son inverse.

II. Homomorphisme:

1.Définition:

Soient E et F deux ensembles munis des LCI * et T respectivement.

Un homomorphisme de (E,*) vers (F,T) est une application f de E vers F vérifiant :

$$\forall (x,y) \in E^2 : f(x * y) = f(x) T f(y)$$

Si en plus f est bijective on dit que f est un isomorphisme de (E,*) vers (F,T)

Exemples:

✓ La fonction ln est un isomorphisme de (\mathbb{R}^{*+},\times) vers $(\mathbb{R},+)$, en effet :

$$\forall x \in \mathbb{R}^{*+} : \ln(x \times y) = \ln x + \ln y$$

De plus la fonction ln réalise une bijection de \mathbb{R}^{*+} vers \mathbb{R}

✓ De même la fonction $exp : x \mapsto e^x$ est un isomorphisme de $(\mathbb{R}, +)$ vers $(\mathbb{R}^{*+}, \times)$, en effet :

$$\forall x \in \mathbb{R} : \exp(x + y) = \exp(x) \times \exp(y)$$

De plus la fonction exp réalise une bijection de \mathbb{R} vers \mathbb{R}^{*+}

✓ La fonction signe :

$$sgn : \mathbb{R}^* \longrightarrow \{-1; 1\}$$

$$x \longmapsto sgn(x, y) = \begin{vmatrix} +1 & si & x > 0 \\ -1 & si & x < 0 \end{vmatrix}$$

Est un homomorphisme (non bijectif) de (\mathbb{R}^*,\times) vers $(\{-1;1\},\times)$

2. Propriétés :

Soit f un homomorphisme de (E,*) vers (F,T).

- f(E) est une partie stable de (F, T).
- Si * est associative dans E alors T est associative dans f(E)
- Si * est commutative dans E alors T est commutative dans f(E)
- Si e est l'élément neutre de (E,*) alors f(e) est l'élément neutre de (f(E),T).
- Si $x \in E$ admet un symétrique x' dans (E,*) alors f(x') est le symétrique de l'élément f(x) dans (f(E), T).

Exercices d'application :

Exercice 1:

Soient les ensembles $E = \{e^{i\alpha}/\alpha \in \mathbb{R}\}$ et $F = \{M_{\theta} = \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}/\theta \in \mathbb{R}\}$

1) Montrer que l'application :

$$f : E \longrightarrow F$$

$$e^{i\alpha} \longmapsto M_{\alpha}$$

est un homomorphisme surjectif de (E,\times) vers (F,\times) . Est-il bijectif?

- 2) En déduire :
 - a. la loi \times est commutative et associative dans F
 - b. L'élément neutre de (F,\times)
 - c. L'inverse de la matrice $A = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$
 - d. A^n en fonction de n.

Exercice 2:

1) On pose
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Calculer $A \times B$, $(A \times B)^2$, A^2 , B^2

2) L'application:

$$\varphi : M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$$

$$X \longmapsto X^2$$

est-elle un homomorphisme de $(M_2(\mathbb{R}),\times)$ vers $(M_2(\mathbb{R}),\times)$