Exercice du livre page 124 n°57

$$f(x) = x^3 + 2x^2 - 20x + 24$$

sur IR

a) Déterminer f'(x) et étudier le sens de variation de f

calculer f'(x) trouver le signe de f'(x) en déduire les variations de f

$$f'(x) = 3x^2 + 4x - 20$$

On étudie le signe de
$$3x^2 + 4x - 20$$
: $\Delta = (4)^2 - 4(3)(-20) = 256$
 $\Delta > 0$, donc il y a 2 racines : $x_1 = \frac{-4 - \sqrt{256}}{2 \times 3} = \frac{-4 - 16}{2 \times 3} = -\frac{20}{6} = -\frac{10}{3}$

Et
$$x_2 = \frac{-4 + \sqrt{256}}{2 \times 3} = \frac{-4 + 16}{2 \times 3} = 2$$

et
$$a > 0$$
, donc

x	- ∞ -	<u>10</u> 3	2	+ ∞
Signe de f'(x)	+	0 –	0	+
Variations de f	f (-	$(\frac{10}{3})$. 0 ~	

$f\left(-\frac{10}{3}\right)\approx 76$	f(2) = 0
$I\left(-\frac{1}{2}\right)\approx 10$	I(2)=0

b) Déterminer la convexité de f et préciser les éventuels points d'inflexion

trouver le signe de f''(x)

en déduire les variations de f'

puis la convexité de f

$$f'(x) = 3x^2 + 4x - 20$$

 $f''(x) = 6x + 4$

On étudie le signe de 6x + 4 qui est de la forme mx + p

$$6x + 4 = 0$$
 $6x = -4$
 $x = -\frac{4}{6}$
 $m = 6$
 $m > 0$

$$= -\frac{6}{6}$$
 $= -\frac{2}{3}$

x	-∞ -	$\frac{2}{3}$ + ∞
Signe de f''(x)	-	
Variation de f'	—	
Convexité de f	f est concave	f est convexe

Conclusion:

f est concave sur]- ∞ ; - $\frac{2}{3}$]

f est convexe sur $\left[-\frac{2}{3};+\infty\right[$

Cf admet un point d'inflexion qui a pour abscisse $-\frac{2}{3}$

c) Déterminer les équations des tangentes T_{-4} et T_3 à la courbe Cf aux points d'abscisses -4 et 3

$$y = f'(a) (x - a) + f(a)$$

a = -4 La tangente
$$T_{-4}$$
 a pour équation : $y = f'(-4)(x-(-4)) + f(-4)$
 $y = f'(-4)(x+4) + f(-4)$

Or
$$f(x) = x^3 + 2x^2 - 20x + 24$$
 donc $f(-4) = (-4)^3 + 2 \times (-4)^2 - 20 \times (-4) + 24 = 72$
 $f'(x) = 3x^2 + 4x - 20$ donc $f'(-4) = 3 \times (-4)^2 + 4 \times (-4) - 20 = 12$

on a donc:
$$y = 12 (x + 4) + 72$$

 $y = 12x + 48 + 72$
 $y = 12x + 120$

a = 3 La tangente T_3 a pour équation : y = f'(3)(x-3) + f(3)

Or
$$f(x) = x^3 + 2x^2 - 20x + 24$$
 donc $f(3) = 3^3 + 2 \times 3^2 - 20 \times 3 + 24 = 9$
 $f'(x) = 3x^2 + 4x - 20$ donc $f'(3) = 3 \times 3^2 + 4 \times 3 - 20 = 19$

on a donc :
$$y = 19 (x-3) + 9$$

 $y = 19x - 57 + 19$
 $y = 19x - 48$

- d) Déterminer la position relative de Cf et T_{-4} sur $]-\infty$; $-\frac{2}{3}]$
- e) Déterminer la position relative de Cf et T_3 sur $[-\frac{2}{3}; +\infty[$

x		2/3	+∞
Convexité de f	f est concave	f est convexe	

d) f est concave sur $]-\infty; -\frac{2}{3}]$ donc Cf est en dessous de chacune de ses tangentes sur cet intervalle.

Or
$$-4 \in]-\infty; -\frac{2}{3}]$$

donc en particulier Cf en dessous de T_{-4}

e) f est <u>convexe</u> sur $[-\frac{2}{3}; +\infty[$ donc <u>Cf est au dessus de chacune de</u> <u>ses tangentes</u> sur cet intervalle.

Or
$$3 \in [-\frac{2}{3}; +\infty[$$

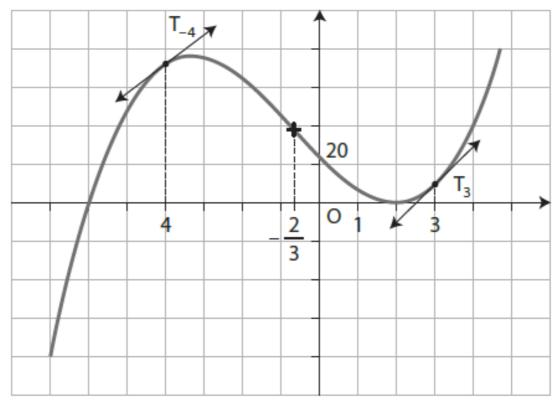
donc en particulier Cf est au dessus de T_3

x	- ∞	$-\frac{10}{3}$		2	+ ∞
Signe de f'(x)	+	0	_	0	+
Variations de f	f	$(-\frac{10}{3})$	7	f (2)	7

х		$-\frac{2}{3}$	+∞
Convexité de f	f est concave	f est convexe	

$$f(-\frac{10}{3}) \approx 76$$
 $f(2) = 0$ $f(-\frac{2}{3}) \approx 38$

La tangente T_{-4} a pour équation : y = 12x + 120La tangente T_3 a pour équation : y = 19x - 48



Exercice 2

Etudier la convexité de f définie sur \mathbb{R} par : $f(x) = (x^2 - 2) e^x$

calculer f''(x)
trouver le signe de f''(x)
en déduire les variations de f'
puis la convexité de f

$$f(x) = (x^2 - 2) e^x$$
 $f = uv$
 $u(x) = x^2 - 2 \quad u'(x) = 2x$
 $f' = u'v + v'u$
 $v(x) = e^x$
 $v'(x) = e^x$

$$f'(x) = 2x e^x + (x^2 - 2)e^x = (x^2 + 2x - 2)e^x$$

$$f' = uv$$
 $u(x) = x^2 + 2x - 2$ $u'(x) = 2x + 2$
 $f'' = u'v + v'u$ $v(x) = e^x$ $v'(x) = e^x$

$$f''(x) = (2x + 2)e^{x} + (x^{2} + 2x - 2)e^{x}$$

$$f''(x) = (2x + 2 + x^{2} + 2x - 2)e^{x}$$

$$f''(x) = (x^{2} + 4x)e^{x}$$

$$f''(x) = x(x + 4)e^{x}$$

X	$-\infty$	4	$0 + \infty$
Signe de	_	(+
X			
Signe de	_	+	+
(x + 4)		'	' ! !
Signe de	+	+	+
\mathbf{e}^{x}	'		
Signe de	+	_	+
$\mathbf{f}^{\prime\prime}(x)$		ע ו !	1
Variation de f'			•
Convexité de f	f est convexe sur $]-\infty$; -4]	f est concave sur [-4;0]	f est convexe sur $[0; +\infty[$