1 STMG

correction de l'interrogation écrite chapitre 6

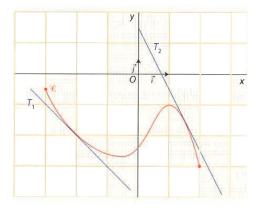
Exercice 1 : justifier avec rigueur

Le plan est muni d'un repère orthogonal (unités graphiques : 1 cm sur l'axe des abscisses et 0,5 cm sur l'axe des ordonnées).

On donne un tracé de la courbe représentative $\mathscr C$ d'une fonction f définie sur [-3;2] .

- Aux points d'abscisses $-\frac{1}{2}$ et 1, % admet une tangente parallèle à l'axe des abscisses.
- T_1 est la tangente à $\mathscr C$ au point d'abscisse 2.
- T_2 est la tangente à \mathscr{C} au point d'abscisse $\frac{3}{2}$.

Déterminer f'(-2), $f'\left(-\frac{1}{2}\right)$, f'(1) et $f'\left(\frac{3}{2}\right)$.



f'(-2) correspond au coefficient directeur de la droite T_1 , tangente à la courbe G au point d'abscisse -2. $f'(-2) = \frac{\Delta y}{\Delta x} = \frac{-2}{1} = -2 =$ (attention aux unités!)

 $f'\left(-\frac{1}{2}\right)$ correspond au coefficient directeur de la tangente à la courbe G au point d'abscisse $-\frac{1}{2}$. En ce point, la tangente est horizontale donc son coefficient directeur est donc nul.

Il en résulte que $f'\left(-\frac{1}{2}\right) = 0$. De la même façon, f'(1) = 0.

(attention aux unités!)

 $f'\left(\frac{3}{2}\right)$ correspond au coefficient directeur de la droite T_2 , tangente à la courbe \mathcal{C} au point d'abscisse

 $\frac{3}{2} \cdot f'\left(\frac{3}{2}\right) = \frac{\Delta y}{\Delta x} = \frac{-8}{2} = -4 =$

Exercice 2: justifier avec rigueur

% est la courbe représentative d'une fonction f définie sur $]-\infty$; 0[, dans le plan muni d'un repère orthonormal.

On sait que:

- la tangente à « au point d'abscisse 1 a pour coefficient directeur 1 ;
- la tangente à \mathscr{C} au point d'abscisse 2 a pour équation $y = \frac{1}{4}x + 1$;
- la tangente à % au point d'abscisse $-\frac{1}{2}$ passe par les points A(0;4) et B(-1;0).

Déterminer f'(-2), f'(-1) et $f'\left(-\frac{1}{2}\right)$

f'(-2) correspond au coefficient directeur de la droite T_1 , tangente à la courbe \mathcal{C} au point d'abscisse -2. Dans l'équation réduite de la tangente, de la forme y = mx + p, le coefficient directeur est m.

On en déduit que $f'(-2) = \frac{1}{4}$.

f '(-1) correspond au coefficient directeur de la tangente à la courbe $\mathbb G$ au point d'abscisse -1. La tangente a pour coefficient directeur 1 donc f '(-1) = 1.

 $f'\left(-\frac{1}{2}\right)$ correspond au coefficient directeur de la droite (AB), tangente à la courbe $\mathcal C$ au point

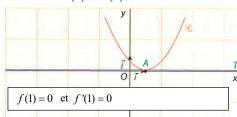
d'abscisse $-\frac{1}{2}$. $f'\left(-\frac{1}{2}\right) = \frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A} = 4$.

Exercice 3 Compléter le tableau suivant :

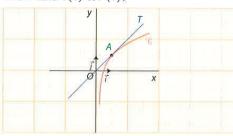
f'(0) = 1	f'(-1) = 2	f'(-1)= - 1
5	3	6
f'(-1) = 1	f'(0) = 0	f'(0)= - 1
1	2	4

Exercice 4: sans justification,

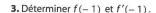
1. Déterminer f(1) et f'(1).

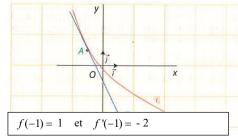


2. Déterminer f(1) et f'(1)

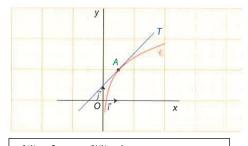


f(1) = 1 et f'(1) = 1





4. Déterminer f(1) et f'(1).



f(1) = 2 et f'(1) = 1

 Ecrire la formule de cours donnant équation de la tangente à la courbe représentative de la fonction f en un point d'abscisse a.

La tangente à la courbe représentative de la fonction f en un point d'abscisse a a pour équation :

$$y = f'(a)(x-a) + f(a)$$