Adiité d'appoche- Chapitre 2.

Activité

1) La mélhode d'Al-Khawarizmi

Découvrir une méthode de résolution d'une équation du second degré.

Cours 1

Équations du second degré

Point Histoire

Al-Khawarizmi (783-850), est un mathématicien perse dont les écrits ont permis l'introduction de l'algèbre en Europe. Il est à l'origine de l'utilisation des chiffres arabes et des mots « algorithme » et « algèbre ».

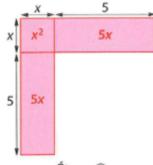
1. On se propose de résoudre l'équation du second degré $x^2 + 10x = 39$ (E).

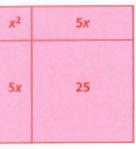
Voici la méthode proposée par le mathématicien perse Al-Khawarizmi.

Étape ①: on suppose que x est positif et on construit un carré de côté x.

Étape ②: on borde ce carré de deux rectangles dont l'aire vaut $\frac{10}{2} \times x$, on obtient ainsi 5 comme autre dimension.

Étape 3: on complète alors le grand carré.





Étape ①

Étape 2

Étape 3

a. Exprimer l'aire du carré de deux façons différentes et en déduire que :

$$x^2 + 10x = (x + 5)^2 - 25$$
.

b. En déduire que résoudre l'équation (E) revient à résoudre l'équation $(x + 5)^2 = 64$.

Déterminer alors la solution positive de l'équation (E). Al-Khawarizmi ne parle pas de l'autre racine de cette éguation, car pour lui 64 n'a qu'une racine carrée : 8.

- c. Déterminer l'autre solution de l'équation (E).
- 2. Utiliser cette méthode pour résoudre dans ℝ les équations suivantes :

$$a. x^2 + 12x = 45.$$

$$x^2 + 4x - 32 = 0$$
.

1. on nonmera grand carré "le carré coloiré entirement en rose et "carré blanc" le corré interieur. L'avie du carré blanc est 25. Le grand carré à pour côté x +5, son aire est donc (x+5) On considére maintenant l'aire de la partie en forme de Crenversé L'avre du grand carri est égale à le somme de l'avre de l' de l'aire du carré blanc. Or le l'a jour surface 22+5=x+5=x on obtient donc: (2+5) (x2+10x)+(25 $(x+5)^2 - 25 = 3c^2 + 10\infty$ en lisant l'égalité à l'envers on a donc: x'+ 10x - (x+5) $(E): (x^2 + 10x) = 39$

on obtaint ensulte
$$(x+5)^2 + 25 = 39$$

(=) $(x+5)^2 = 64$

possos $x = (x+5)$

on a class $x^2 = 64$

(=) $x = 48$ (on $x = -8$)

(=) $x = 8-5$ (on $x = -8-5$)

(=) $x = 3$ (on $x = -8-5$)

(=) $x = 3$ (on $x = -13$)

