Chapitre 4: Logarithme népérien

I. La fonction logarithme népérien

a) Définition

Soit f la fonction définie sur]0; + ∞ [par : $f(x) = \frac{1}{x}$.

Cette fonction est continue sur]0; $+\infty[$ et admet alors des primitives sur]0; $+\infty[$.

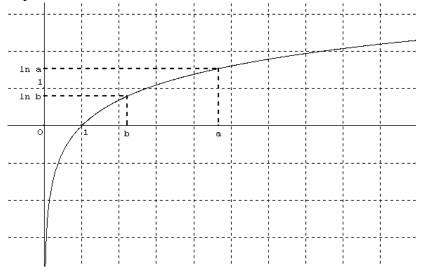
<u>Définition</u>: La fonction logarithme népérien, notée ln, est l'unique primitive de la fonction $x \mapsto \frac{1}{x}$ définie sur]0; $+\infty[$ et qui s'annule en 1.

b) Conséquences

- $\ln 1 = 0$
- La fonction logarithme népérien est dérivable sur]0; + ∞ [et pour tout x > 0, $\ln^2(x) = \frac{1}{x}$.
- Pour tout x > 0, $\frac{1}{x} > 0$, donc la fonction **ln est strictement croissante sur]0**; + ∞ [.

c) Sens de variation et équations, inéquations

• courbe représentative de la fonction ln :



Propriété : Pour tous réels a et b strictement positifs,

- $\ln a > \ln b$ équivaut à a > b
- $\ln a = \ln b$ équivaut à a = b

Conséquences : Pour tout réel x strictement positif :

- $\ln x = 0$ équivaut à x = 1
- $\ln x < 0$ équivaut à 0 < x < 1
- $\ln x > 0$ équivaut à x > 1

Applications : Résolution d'équations et d'inéquations

- <u>Méthode</u>: pour résoudre une équation du type $\ln u(x) = \ln v(x)$ (respectivement une inéquation du type $\ln u(x) \ge \ln v(x)$):
- on détermine l'ensemble des réels x tels que u(x) > 0 et v(x) > 0 (dans ce cas l'équation est bien définie);
- on résout dans cet ensemble l'équation u(x) = v(x) (respectivement l'inéquation $u(x) \ge v(x)$).
- Résoudre l'équation : $ln(x^2 4) = ln(3x)$.
- on cherche les nombres x tels que $x^2 4 > 0$ et 3x > 0.

Or $x^2 - 4 > 0$ lorsque $x \in]-\infty$; $-2[\cup]2$; $+\infty[$ et 3x > 0 lorsque x > 0.

L'équation sera alors résolue dans l'ensemble $E = [2; +\infty[$.

- de plus $x^2 - 4 = 3x$ signifie $x^2 - 3x - 4 = 0$.

On trouve $\Delta = 25$ et les solutions sont $x_1 = -1$ et $x_2 = 4$. Or $4 \in E$ et $-1 \notin E$, donc la seule solution de l'équation $\ln(x^2 - 4) = \ln(3x)$ est 4.

• Résoudre l'inéquation : $ln(2x + 4) \ge ln(6 - 2x)$.

On cherche les réels x tels que 2x + 4 > 0 et 6 - 2x > 0, c'est à dire tels que x > -2 et x < 3. L'inéquation doit alors être résolue dans l'ensemble : E =]-2; 3[.

De plus, $2x + 4 \ge 6 - 2x$ équivaut à $x \ge \frac{1}{2}$. L'ensemble des solutions est alors :]-2 ; $3 [\cap [\frac{1}{2}; +\infty[$, c'est à dire $[\frac{1}{2}; 3[$.

• Résoudre l'équation : ln(2x - 4) = 0

ln(2x-4) = 0 équivaut à 2x-4=1, c'est à dire $x = \frac{5}{2}$. La seule solution de l'équation est donc $\frac{5}{2}$.

• Résoudre l'inéquation : ln(x - 10) < 0

ln(x-10) < 0 équivaut à 0 < x-10 < 1, c'est à dire : 10 < x < 11.

L'ensemble des solutions est alors :]10 ; 11[.

II. Propriétés algébriques

Propriété: Pour tous réels a et b strictement positifs, $\ln(a \times b) = \ln a + \ln b$

Remarque: Cette propriété se généralise au cas d'un produit de trois, quatre, ... facteurs.

Propriétés : Pour tous réels a et b strictement positifs :

•
$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$

•
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

• pour tout
$$n \in \Omega$$
, $\ln(a^n) = n \ln(a)$

•
$$\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$$

Exercice: Simplifier chacune des expressions suivantes:

$$A = \ln 8 + \ln 10 + \ln \frac{1}{40}$$

$$B = \ln 3x - \ln 3$$

$$C = \ln \frac{3}{4} + \ln \frac{8}{3} - \ln 2^3$$

$$D = \ln 7^{-3} + 2 \ln 49$$

$$E = 4 \ln 25 - 2 \ln \sqrt{5}$$

III. Etude de la fonction ln

Nous avons déjà vu que la fonction ln est dérivable et strictement croissante sur]0 ; +∞[.

- a) <u>limite en +∞ et en 0</u>
- $\lim_{x \to \infty} \ln x = +\infty$.
- $\bullet \lim_{x \to 0} \ln x = -\infty$

Conséquence : L'axe des ordonnées est asymptote verticale à la courbe représentant ln.

Application: Etudier la limite en $+\infty$ de chacune des fonctions suivantes.

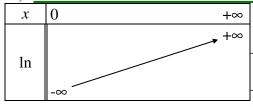
- a) Pour tout réel x > 3, $f(x) = \ln(x^2 3x + 1)$.
- b) Pour tous réels $x > -\frac{1}{2}$, $g(x) = \ln(2x + 1) \ln(x + 3)$.
- a) f est la composée de deux fonctions : f(x) = u o v(x) où $v(x) = x^2 3x + 1$ et $u(x) = \ln x$ $\lim_{x \to +\infty} x^2 3x + 1 = \lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} \ln x = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$.

b)
$$g(x) = \ln(2x+1) - \ln(x+3) = \ln\left(\frac{2x+1}{x+3}\right)$$
.

g est la composée de deux fonctions : g(x) = u o v(x) où $v(x) = \frac{2x+1}{x+3}$ et $u(x) = \ln x$

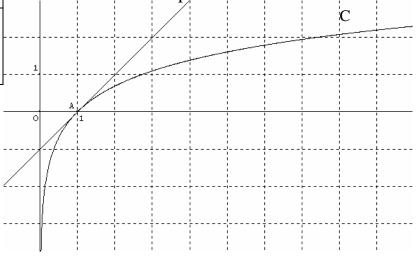
$$\lim_{x \to +\infty} \frac{2x+1}{x+3} = \lim_{x \to +\infty} \frac{2x}{x} = \lim_{x \to +\infty} 2 = 2 \quad \text{et} \quad \lim_{x \to 2} \ln x = \ln 2 \quad \text{donc} \quad \lim_{x \to +\infty} g(x) = \ln 2$$

b) Tableau de variation de la fonction ln



T est la tangente à la courbe C représentative de la fonction ln au point A d'abscisse 1. Une équation de T est : y = x - 1La courbe C est en-dessous de T sur]0; $+\infty[$, donc pour tout x > 0,

 $\ln x \le x - 1.$



f'(x)

f

c) <u>limite en $+\infty$ de $\frac{\ln x}{x}$ </u>

Propriété:
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

<u>Démonstration</u>: f est la fonction définie sur]0; $+\infty[$ par $f(x) = \ln x - 2\sqrt{x}$.

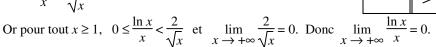
f est dérivable sur]0; + ∞ [, et pour tout x > 0, $f'(x) = \frac{1}{x} - \frac{1}{\sqrt{x}} = \frac{1 - \sqrt{x}}{x}$

Sur]0; + ∞ [, f'(x) est du signe de $1 - \sqrt{x}$.

Le tableau de variation permet d'affirmer que, pour tout x > 0,

f(x) < 0, c'est à dire $\ln x < 2\sqrt{x}$,

d'où
$$\frac{\ln x}{x} < \frac{2}{\sqrt{x}}$$
.



IV. L'équation $\ln x = m$

a) équation $\ln x = m$

D'après le tableau de variation de la fonction ln, on déduit :

<u>Propriété</u>: Pour tout réel m, l'équation $\ln x = m$ admet une unique solution dans |0|; $+\infty$ [.

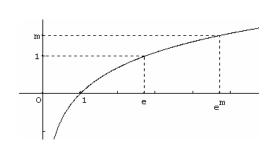
En particulier, pour m = 1, la propriété précédente permet d'affirmer qu'il existe un seul réel dans $[0; +\infty[$, tel que ln x = 1. Ce réel est noté **e**. On obtient **e** ≈ **2,718**.

b) Le nombre e^m pour un réel m quelconque

Pour tout entier relatif n, $ln(e^n) = n$.

En effet : $ln(e^n) = n \times ln(e) = n \times 1 = n$.

De façon plus générale, même lorsque m n'est pas un entier, on note e^m la seule solution de l'équation $\ln x = m$.



0

Applications:

a) Résoudre l'équation : ln(2x - 1) = -5

Cela équivaut à résoudre : $2x - 1 = e^{-5}$. On obtient : $x = \frac{e^{-5} + 1}{2}$. La seule solution est alors $\frac{e^{-5} + 1}{2}$.

b) Résoudre l'inéquation : ln(1 - 5x) > 1.

Cela équivaut à résoudre $\ln(1-5x) > \ln(e)$, c'est à dire 1-5x > e, donc $x < \frac{1-e}{5}$.

L'ensemble des solutions est alors]- ∞ ; $\frac{1-e}{5}$ [.

c) Résoudre l'inéquation : $ln(x + 1) \le 2$

Cela revient à résoudre $\ln(x+1) \le \ln(e^2)$, c'est à dire $0 < x+1 \le e^2$. Donc $-1 < x \le e^2 - 1$. L'ensemble des solutions est alors :]-1 ; $e^2 - 1$ [.

d) Résoudre l'équation : $(\ln x)^2 - 3 \ln x - 4 = 0$.

On pose $X = \ln x$ et on obtient l'équation : $X^2 - 3X - 4 = 0$ qui est une équation du second degré : $\Delta = 25$. Les solutions sont alors : $X_1 = -1$ et $X_2 = 4$.

On résout alors les équations :

 $\ln x = -1$ et on obtient : $x = e^{-1}$

 $\ln x = 4$ et on obtient : $x = e^4$.

Les deux solutions de l'équation sont alors e⁻¹ et e⁴.

V. Fonction ln *u*

a) Dérivée de ln u

<u>Propriété</u>: Si u est une fonction dérivable et **strictement positive sur un intervalle I**, alors la fonction $\ln u$ est dérivable sur I et : $(\ln u)' = \frac{u'}{u}$.

Exemples:

• f est la fonction définie sur 3 par $f(x) = \ln(x^2 + 1)$.

Le polynôme u définie par $u(x) = x^2 + 1$ est strictement positif et dérivable sur 3.

Donc f est dérivable sur 3 et $f'(x) = \frac{2x}{x^2 + 1}$.

• La fonction $g: x \mapsto \ln(2x-1)$ est définie pour 2x-1>0, c'est à dire pour $x>\frac{1}{2}$.

Alors g est dérivable sur $]\frac{1}{2}$; $+\infty[$, et pour tout $x \in]\frac{1}{2}$; $+\infty[$, $g'(x) = \frac{2}{2x-1}$.

b) Primitive de $\frac{\underline{u'}}{\underline{u}}$

<u>Propriété</u>: u est une fonction dérivable sur un intervalle I, **ne s'annulant pas sur I**. Alors, une primitive sur I de la fonction $\frac{u'}{u}$ est la fonction :

- $x \mapsto \ln(u(x))$ si u(x) > 0 sur I;
- $x \mapsto \ln(u(x))$ si u(x) < 0 sur I.

Exemples:

• Sur l'intervalle $]-\infty$; 0[, x est strictement négative.

Une primitive sur]- ∞ ; 0[de la fonction $x \mapsto \frac{1}{x}$ est donc la fonction $x \mapsto \ln(-x)$

• La fonction $f: x \mapsto \frac{4x^3}{x^4 + 2}$ se présente sous la forme $\frac{u'}{u}$ avec $u(x) = x^4 + 2$. Or pour tout x de 3,

 $x^4 + 2 > 0$. Donc une primitive de f sur 3 est la fonction : $x \mapsto \ln(x^4 + 2)$.

VI. La fonction logarithme décimal

Définition: La fonction **logarithme décimal**, notée **log**, est la fonction définie sur]0; +∞[

par:
$$\log x = \frac{\ln x}{\ln 10}$$
.

Ainsi log(1) = 0, log(10) = 1.

<u>Remarque</u>: Pour tout entier n, $\log(10^n) = n$.