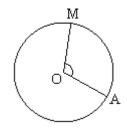
Trigonométrie

I) mesure des angles en radians

Exemples:

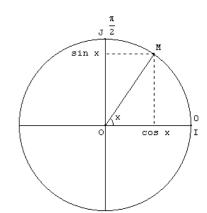

Arc
$$(360^{\circ})$$
, Arc (180°) , Arc (90°) , Arc (45°) , Arc (60°) , Arc (30°) ,

Définition:

Une mesure de l'angle
$$\widehat{IOM}$$
 en **radians** et dans le sens direct est alors $x \operatorname{rad} = \frac{x^{\circ}}{360^{\circ}}$.

<u>remarque</u>: Si on considère un cercle de centre O, de rayon r, et un angle \widehat{AOM} , A et M étant deux points du cercle. Désignons par L la longueur de l'arc de cercle \widehat{AM} .

La **mesure en radians** de l'angle \widehat{AOM} est le réel $\alpha = \frac{L}{r}$



II) Cosinus et sinus d'un nombre réel

Dans un repère orthonormé $(O; \overrightarrow{OI}, \overrightarrow{OJ})$, on note C le cercle de centre O et de rayon 1. On oriente le plan dans le sens direct. C est appelé le **cercle trigonométrique**.

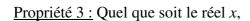
<u>Définition</u>: Soit M un point de C tel que $\widehat{IOM} = x$ rad Le cosinus de x, noté $\cos x$, est **l'abscisse de M.** Le sinus de M, noté $\sin x$, est **l'ordonnée de M.**

Exemples:
$$\cos 0 = 1$$
 et $\sin 0 = 0$; $\cos \pi = -1$ et $\sin \pi = 0$; $\cos \frac{\pi}{2} = 0$ et $\sin \frac{\pi}{2} = 1$...

Propriété 1:

Pour tout *x* réel,
$$-1 \le \cos x \le 1$$

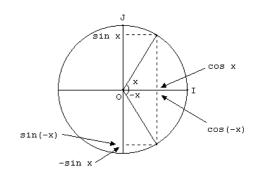
$$-1 \le \sin x \le 1$$


$$\cos^2 x + \sin^2 x = 1$$

Propriété 2 : Quel que soit le réel x,

$$\cos(x + 2\pi) = \cos x$$

$$\sin(x+2\pi) = \sin x$$
.

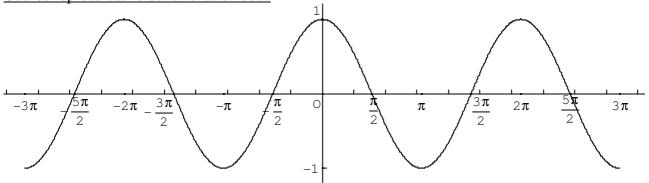

On dit que les fonctions cos et sin sont **périodiques** de **période 2\pi.**

$$\cos(-x) = \cos x$$

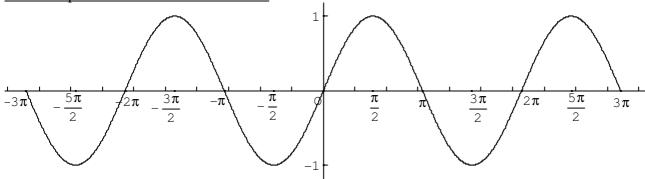
$$\sin(-x) = -\sin x$$
.

La fonction cos est **paire** et la fonction sin est **impaire**.

III) Fonctions Cosinus et Sinus


a) Tableaux de valeurs

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0


Grâce à la parité de chaque fonction et à la périodicité, il est maintenant possible de tracer la courbe représentative de chacune des fonctions sur 3.

b) Courbe représentatives

Courbe représentative de la fonction cos :

Courbe représentative de la fonction sin :

c) Tableaux de variations

On peut alors établir les tableaux de variation des fonctions cos et sin sur $[-\pi; \pi]$:

х	-π	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
cos	-1	0	1	0	-1

х	-π	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
sin	0	-1		<u></u>	0