Ex 1: Récurrence - (*) - 2 pts

Démontrer, par récurrence, la propriété :

$$P_n: \forall n \in \mathbb{N}, \ 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Ex 2 : Étude de suites - (**) - 5 pts

On considère la suite (u_n) définie par $u_0=8$ et $u_{n+1}=\sqrt{u_n+1}$ pour $n \ge 1$

- 1) Donner les conjectures relatives à cette suite (u_n) (variations, minorant, majorant, convergence, limite)
- 2) Démontrer que $\forall n \in \mathbb{N}$: $1 < u_n \le 8$
- 3) Étudier le sens de variation de la suite (u_n)
- 4) Montrer que (u_n) est convergente et calculer sa limite

Ex 3: Limites de suites - (*) - 4 pts

Calculer la limite (éventuelle) des suites suivantes :

a)
$$u_n = 2\left(\frac{5}{2}\right)^n - \frac{4}{3^n}$$
 b) $u_n = \frac{1}{1+1}$

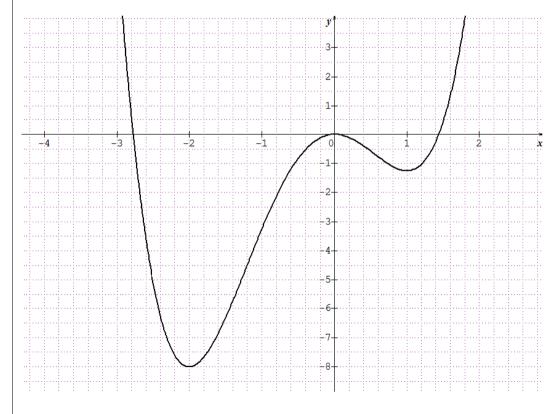
a)
$$u_n = 2\left(\frac{5}{2}\right)^n - \frac{4}{3^n}$$
 b) $u_n = \frac{1}{1+\sqrt{n}}$ c) $u_n = \frac{n^2}{1+n^2}$

$$d) \quad u_n = \sqrt{n+1} - \sqrt{n}$$

d)
$$u_n = \sqrt{n+1} - \sqrt{n}$$
 e) $u_n = \frac{(n+1)(3-n)}{2n^2+1}$ f) $u_n = n^2 + (-1)^n \cdot n$

$$u_n = n^2 + (-1)^n \cdot n$$

Ex 4 : Étude de suites - (**) - 5 pts


On considère la fonction f définie sur [0;1] par $f(x) = \frac{3x+2}{x+4}$ La suite (u_n) est définie par $u_{n+1} = f(u_n)$ et $u_0 = 0$

- 1) a) Donner les conjectures relatives à cette suite (u_n) (variations, minorant, majorant, convergence, limite)
 - b) Étudier le sens de variation de f sur [0;1]
- 2) a) Montrer que la suite (u_n) est croissante
 - b) Montrer que la suite (u_n) est bornée
 - c) Que peut-on en déduire ?
- 3) Calculer la limite de la suite (u_n)

Ex 5 : Étude de fonctions - (**) - 4 pts

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{3}{4}x^4 + x^3 - 3x^2$ On note C_f la courbe représentative de la fonction f

- 1) a) Donner l'intervalle de dérivabilité de f
 - b) Calculer la dérivée f'(x)
 - c) Étudier le signe de f'(x)
 - d) En déduire le tableau de variation de f
- 2) a) Déterminer l'équation de la tangente (d) à C_f au point Ad'abscisse −1
 - b) Construire cette tangente (d) sur le graphique ci-dessous
 - c) Compléter le grahique C_f avec ses éléments caractéristiques

