Ex 1: Fonctions numériques - (**) - 6 pts

Soit f la fonction définie par $f(x)=x+1-\frac{2}{x^2+1}$ avec $x \in \mathbb{R}$

Partie A : Étude d'une fonction auxiliaire

On pose $g(x)=x^3-x^2+3x+1$ avec $x \in \mathbb{R}$ g est définie et dérivable sur \mathbb{R} et $g'(x)=3x^2-2x+3$ le discriminant du trinôme $3x^2-2x+3$ est négatif donc g'(x) est du signe de son facteur dominant ; donc $\forall x \in \mathbb{R} : g'(x) > 0$

ainsi g est strict croissante sur \mathbb{R}

$$g(x) = x^{3} \left(1 - \frac{1}{x} + \frac{3}{x^{2}} + \frac{1}{x^{3}}\right) \text{ or } \lim_{x \to -\infty} \left(1 - \frac{1}{x} + \frac{3}{x^{2}} + \frac{1}{x^{3}}\right) = 1 \text{ et } \lim_{x \to -\infty} \left(x^{3}\right) = -\infty$$

$$\text{donc (par produit)} \lim_{x \to -\infty} g(x) = -\infty \text{ ; de même } \lim_{x \to +\infty} g(x) = +\infty$$

Ainsi g est continue, monotone et de signe alternée sur [-1;0](g(-1)<0 et g(0)>0) donc d'après le th des valeurs intermédiaires, l'équation g(x)=0 possède une solution unique $\alpha \in [-1,0]$

on applique la méthode des « tableaux successifs » :

$$g(-1)<0< g(0)$$
 donc $-1<\alpha<0$
 $g(-0,3)<0< g(-0,2)$ donc $-0,3<\alpha<-0,2$
 $g(-0,30)<0< g(-0,29)$ donc $-0,30<\alpha<-0,29$
 $g(-0,296)<0< g(-0,295)$ donc $-0,296<\alpha<-0,295$

ainsi on déduit que g est négative sur $]-\infty$; $\alpha[$, nulle en $x=\alpha$ et positive sur $\alpha:+\infty$

Partie B : Étude de la fonction principale

 $x^2+1\neq 0$ donc f est définie et dérivable sur \mathbb{R}

$$f(x)=x+1-\frac{2}{x^2+1}$$
 donc on déduit que :

$$f'(x) = 1 - \frac{-2(2x)}{(x^2+1)^2} = 1 + \frac{4x}{(x^2+1)^2} = \frac{(x^2+1)^2 + 4x}{(x^2+1)^2} = \frac{x^4 + 2x^2 + 4x + 1}{(x^2+1)^2}$$

par ailleurs,

$$(x+1)g(x)=(x+1)(x^3-x^2+3x+1)=x^4-x^3+3x^2+x+x^3-x^2+3x+1$$

donc
$$(x+1)g(x)=x^4+2x^2+4x+1$$

donc la dérivée de f vérifie : $f'(x) = \frac{(x+1)g(x)}{(x^2+1)^2}$

En utilisant la **Partie** A on obtient le tableau de variations de f:

x	$-\infty$	-1	;	α	:	+∞
(x+1)	_	0	+		+	
g(x)	_		_	0	+	
$(x^2+1)^2$	+		+	+		
f'(x)	+	0	_	0	+	

х	$-\infty$	-1		α		+∞
signe de f'	+	0	_	0	+	
f		⁻¹ \		$f(\alpha)$		+∞

$$f(x)=x+1-\frac{2}{x^2+1}$$
 Donc $f(x)-(x+1)=\{-2\}$ over $\{x^2+1\}$

or
$$\lim_{x \to \infty} \left(\frac{-2}{x^2 + 1} \right) = \lim_{x \to \infty} \left(\frac{-2}{x^2} \right) = 0$$
 donc $\lim_{x \to \infty} \left(f(x) - (x+1) \right) = 0$

Donc C_f admet une asymptote oblique (d) d'équation réduite y=x+1

Ex 2 : Probabilités conditionnelles - (*) - 5 pts

On note les événements suivants :

- \triangleright C: « La personne est favorable à la construction du barrage »
- E : « La personne est écologiste » arbre pondéré de la situation ---->

$$P(C \cap E) = P(C) \times P_C(E) = 0.65 \times 0.7 = 0.455$$

la probabilité qu'une personne interrogée soit opposée au barrage et soit écologiste est de 45,5 %

D'après la formule des probabilités totales $P(E) = P(C \cap E) + P(\overline{C} \cap E)$ donc $P(E) = P(C) \times P_{C}(E) + P(\overline{C}) \times P_{\overline{C}}(E)$ soit $P(E)=0.65\times0.7+0.35\times0.2=0.525$

la probabilité qu'une personne interrogée soit écologiste est de 52,5 %

On interroge une personne écologiste ; la probabilité qu'elle soit opposée au

barrage est alors $P_E(C) = \frac{P(E \cap C)}{P(E)} = \frac{0.455}{0.525} = \frac{13}{15} \approx 0.866$

donc la probabilité qu'une personne soit opposée au barrage sachant qu'elle est écologiste est de 86,6 %

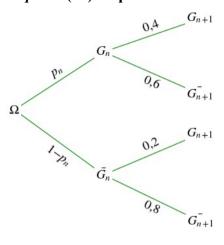
Ex 3 : Probabilités & Suites arithmético-géométriques - (**) - 6 pts

On utilise les notations suivantes :

- G_n : « L'internaute gagne la $n^{\text{ème}}$ partie »
- P_n : « Probabilité que l'internaute gagne la $n^{\text{ème}}$ partie »

arbre pondéré en annexe ----->

Montrons que :
$$\forall n \in \mathbb{N}^*$$
: $p_{n+1} = 0,2$ $p_n + 0,2$
 $p_{n+1} = P(G_{n+1})$
 $= P(G_n \cap G_{n+1}) + P(\overline{G_n} \cap G_{n+1})$
 $= p_n \times 0,4 + (1 - p_n) \times 0,2$
 $= 0,2$ $p_n + 0,2$



Pour tout entier $n \ge 1$ on pose : $u_n = p_n - 0.25$ avec $p_1 = 1$ donc $u_{n+1} = p_{n+1} - 0.25$ $= 0.2 p_n + 0.2 - 0.25$ $= 0.2 p_n - 0.05$ $= 0.2 (p_n - 0.25)$ $= 0.2 u_n$

donc (u_n) est une suite géométrique de raison q = 0,2 et de 1er terme $u_1 = p_1 - 0,25 = 0,75$

ainsi, pour tout entier $n \ge 1$: $u_n = u_1 \times q^{n-1} = 0.75(0.2)^{n-1}$ or $p_n = u_n + 0.25$ donc pour tout entier $n \ge 1$: $p_n = 0.75(0.2)^{n-1} + 0.25$

on obtient que : $p_{n+1} - p_n = (0.75(0.2)^n + 0.25) - (0.75(0.2)^{n-1} + 0.25)$

donc
$$p_{n+1} - p_n = 0.75(0.2)^n - 0.75(0.2)^{n-1}$$

donc
$$p_{n+1} - p_n = 0.75((0.2)^n - (0.2)^{n-1})$$

done
$$p_{n+1} - p_n = 0.75(0.2)^{n-1}(0.2-1)$$

donc
$$p_{n+1} - p_n = -0.6(0.2)^{n-1}$$

ainsi pour tout entier $n \ge 1$: $p_{n+1} - p_n < 0$ donc la suite (p_n) est décroissante

par ailleurs, pour tout entier $n \ge 1$: $0 < p_n < 1$ (propriété des probabilités) donc la suite (p_n) est minorée par 0

d'après le th de convergence des suites monotones on déduit que la suite (p_n) est convergente vers une limite L

enfin, on sait que
$$0 < q < 1$$
 donc $\lim_{n \to +\infty} (0,2)^{n-1} = 0$ donc $\lim_{n \to +\infty} 0.75(0,2)^{n-1} = 0$ donc $\lim_{n \to +\infty} (p_n) = 0.25$

par conséquent, cela signifie qu'au fur et à mesure des parties jouées, la probabilité de gagner va s'approcher de 25 %

Ex 4: Lois Binomiales - (*) - 3 pts

Pour les questions suivantes, la variable aléatoire X suit une loi binomiale de paramètre n et p: B(n,p). <u>Aucune justification n'est demandée</u>

1) n=6 et p=0,4 . Donner la loi de probabilité de X

k	0	1	2	3	4	5	6
P(X=k)	0,0460	0,1860	0,3410	0,2760	0,1380	0,0370	0,0004

- 2) n=10 et E(X)=3 donc n p=3 donc p=0,3 avec une calculatrice on obtient que : $P(X \le 3) \simeq 0,6496$ et $P(X \ge 7) \simeq 0,01059$
- 3) p=0,2 et $\sigma(X)=2$ donc $\sqrt{n p(1-p)}=2$ donc n=25 avec une calculatrice on obtient que : $P(X \le 2) \simeq 0.098$ et $P(X > 2) \simeq 0.902$

