Ex 1:

1) Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ont pour coordonnées respectives (1,-1,-1) et (2,-5,-3).

S'il existe un réel k tel que $\overrightarrow{AC} = \overrightarrow{kAB}$, alors k=2 à partir de la première coordonnée et -k=-5 ou encore k=5 à partir de la deuxième coordonnée. Ceci est impossible et il n'existe donc pas de réel k tel que $\overrightarrow{AC} = \overrightarrow{kAB}$.

On en déduit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires ou encore

2) Ainsi, les trois points A, B et C définissent un unique plan.

a)

$$\overrightarrow{u}.\overrightarrow{AB} = 2 \times 1 + (-1) \times (-1) + 3 \times (-1) = 2 + 1 - 3 = 0$$

et

$$\overrightarrow{u}.\overrightarrow{AC} = 2 \times 2 + (-1) \times (-5) + 3 \times (-3) = 4 + 5 - 9 = 0.$$

Ainsi, le vecteur \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires du plan (ABC) et donc le le vecteur \overrightarrow{u} est orthogonal au plan (ABC) ou encore

la droite Δ est orthogonale au plan (ABC).

b) Le plan (ABC) est le plan passant par A(0,4,1) et de vecteur directeur $\overrightarrow{u}(2,-1,3)$. Une équation cartésienne de ce plan est 2(x-0)-(y-4)+3(z-1)=0 ou encore

une équation cartésienne du plan (ABC) est
$$2x - y + 3z + 1 = 0$$
.

c) Δ est la droite passant par D(7,-1,4) et de vecteur directeur $\overrightarrow{u}(2,-1,3)$. Une représentation paramétrique de la droite Δ est donc

$$\begin{cases} x = 7 + 2t \\ y = -1 - t \\ z = 4 + 3t \end{cases}, t \in \mathbb{R}.$$

d) Soit M(7+2t,-1-t,4+3t), $t \in \mathbb{R}$, un point de Δ .

$$M \in (ABC) \Leftrightarrow 2(7+2t) - (-1-t) + 3(4+3t) + 1 = 0 \Leftrightarrow 14t + 28 = 0 \Leftrightarrow t = -2.$$

Quand t = -2, on obtient le point de coordonnées (3, 1, -2).

Le point
$$H$$
 a pour coordonnées $(3, 1, -2)$.

3) a) \mathscr{P}_1 est un plan de vecteur normal $\overrightarrow{n_1}(1,1,1)$ et \mathscr{P}_1 est un plan de vecteur normal $\overrightarrow{n_2}(1,4,0)$. Les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires et donc

les plans
$$\mathcal{P}_1$$
 et \mathcal{P}_2 sont sécants en une droite.

b) Soit M(-4t-2, t, 3t+2), $t \in \mathbb{R}$, un point de d.

$$(-4t-2) + (t) + (3t+2) = 0$$

et

$$(-4t-2)+4(t)+2=0.$$

Ainsi, tout point de d appartient à \mathcal{P}_1 et \mathcal{P}_2 et donc

la droite d'est la droite d'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .

c) Un vecteur directeur de la droite d est le vecteur $\overrightarrow{u'}(-4,1,3)$ et un vecteur normal au plan (ABC) est le vecteur $\overrightarrow{u'}(2,-1,3)$.

$$\overrightarrow{u} \cdot \overrightarrow{u}' = 2 \times (-4) + (-1) \times 1 + 3 \times 3 = -8 - 1 + 9 = 0.$$

On en déduit que

la droite d est parallèle au plan (ABC).

Ex 2:

Partie A

Restitution organisée de connaissances

- Si Δ est orthogonale à toute droite du plan P, en particulier Δ est orthogonale aux droites D_1 et à D_2 .
- Réciproquement, supposons que Δ soit orthogonale aux droites D_1 et à D_2 . Il revient au même de dire que le vecteur \overrightarrow{v} est orthogonal aux vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.

Soient D une droite du plan P puis \overrightarrow{u} un vecteur directeur de D.

Puisque les droites \mathcal{D}_1 et \mathcal{D}_2 sont deux droites sécantes du plan P, les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont deux vecteurs non colinéaires du plan P. Puisque \overrightarrow{u} est un vecteur du plan P, on sait qu'il existe deux réels λ et μ tels que

$$\overrightarrow{u} = \lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}$$
.

Mais alors

$$\overrightarrow{v}.\overrightarrow{u} = \overrightarrow{v}.\left(\lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}\right) = \lambda \overrightarrow{v}.\overrightarrow{u_1} + \mu \overrightarrow{v}.\overrightarrow{u_2} = 0 + 0 = 0.$$

Le vecteur \overrightarrow{v} est orthogonal au vecteur \overrightarrow{u} ou encore la droite Δ est orthogonale à D.

On a ainsi montré que si Δ est orthogonale à deux droites sécantes du plan P, alors Δ est orthogonale à toute droite du plan P.

Partie B

Affirmation 1 VRAI
Affirmation 2 FAUX
Affirmation 3 VRAI
Affirmation 4 VRAI

Justification 1. Un vecteur directeur de Δ est le vecteur $\overrightarrow{v}(1,3,-2)$.

Le vecteur \overrightarrow{AB} a pour coordonnées (4, -2, -1) et le vecteur \overrightarrow{AC} a pour coordonnées (-1, -1, -2). Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont deux vecteurs non colinéaires du plan P.

$$\overrightarrow{v}.\overrightarrow{AB} = 1 \times 4 + 3 \times (-2) + (-2) \times (-1) = 4 - 6 + 2 = 0$$

et

$$\overrightarrow{v}.\overrightarrow{AC} = 1 \times (-1) + 3 \times (-1) + (-2) \times (-2) = -1 - 3 + 4 = 0.$$

Le vecteur \overrightarrow{v} est orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{AC} ou encore la droite Δ est orthogonale aux droites (AB) et (AC). On en déduit que la droite Δ est orthogonale à toute droite du plan P. L'affirmation 1 est vraie.

Justification 2. Puisque la droite Δ est orthogonale à la droite (AB), les droites Δ et (AB) ne sont pas parallèles et donc sont sécantes ou non coplanaires.

Une représentation paramétrique de la droite (AB) est
$$\left\{ \begin{array}{l} x=4\mathfrak{u} \\ y=-1-2\mathfrak{u} \\ z=1-\mathfrak{u} \end{array} \right.,\, \mathfrak{u}\in\mathbb{R}.$$

Soient M(t, 3t-1, -2t+8), $t \in \mathbb{R}$, un point de Δ et N(4u, 1-2u, 1-u), $u \in \mathbb{R}$, un point de (AB).

$$\begin{split} M = N &\Leftrightarrow \left\{ \begin{array}{l} t = 4u \\ 3t - 1 = 1 - 2u \\ -2t + 8 = 1 - u \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = 4u \\ 3(4u) - 1 = 1 - 2u \\ -2(4u) + 8 = 1 - u \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = 4u \\ 14u = 2 \\ 7u = 7 \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} t = 4u \\ u = \frac{1}{7} \\ u = 1 \end{array} \right. \end{split}$$

Ce système n'a pas de solution et donc les droites Δ et (AB) ne sont pas sécantes. On en déduit que les droites Δ et (AB) ne sont pas coplanaires. L'affirmation 2 est fausse.

Justification 3. Les points A, B et C définissent un unique plan à savoir le plan (ABC).

- $\bullet \ x_A + 3y_A 2z_A + 5 = 0 3 2 + 5 = 0. \ \text{Donc le point A appartient au plan d'équation} \ x + 3y 2z + 5 = 0. \\ \bullet \ x_B + 3y_B 2z_B + 5 = 4 9 + 0 + 5 = 0. \ \text{Donc le point B appartient au plan d'équation} \ x + 3y 2z + 5 = 0.$
- $x_C + 3y_C 2z_C + 5 = -1 6 + 2 + 5 = 0$. Donc le point C appartient au plan d'équation x + 3y 2z + 5 = 0.

Ainsi, les points A, B et C appartiennent au plan d'équation x + 3y - 2z + 5 = 0 et donc le plan (ABC) est le plan d'équation x + 3y - 2z = 0. L'affirmation 3 est vraie.

Justification 4. Le plan (ABC) admet pour vecteur normal le vecteur $\overrightarrow{\pi}(1,3,-2)$ et la droite Δ admet pour vecteur directeur le vecteur $\overrightarrow{u}(11; -1; 4)$.

$$\overrightarrow{u} \cdot \overrightarrow{n} = 11 \times 1 + (-1) \times 3 + 4 \times (-2) = 11 - 3 - 8 = 0.$$

Les vecteurs \overrightarrow{u} et \overrightarrow{n} sont orthogonaux et donc la droite D est parallèle au plan d'équation x + 3y - 2z + 5 = 0 qui est le plan (ABC). Plus précisément, la droite D est strictement parallèle au plan (ABC) ou incluse dans le plan (ABC). D'autre part,

$$x_0 + 3y_0 - 2z_0 + 5 = 0 + 0 + 0 + 5 = 0t + 5 = 5.$$

Donc, le point O n'appartient pas au plan d'équation x+3y-2z+5=0 et on en déduit que la droite D est strictement parallèle au plan d'équation x + 3y - 2z + 5 = 0. L'affirmation 4 est vraie.