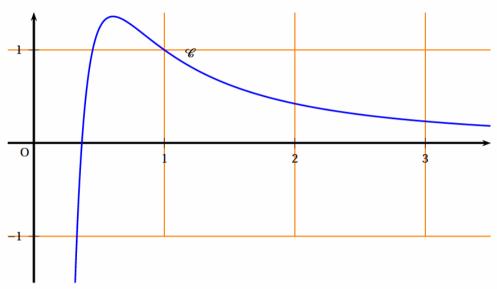
Commun à tous les candidats

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par

$$f(x) = \frac{1 + \ln(x)}{x^2}$$

et soit $\mathscr C$ la courbe représentative de la fonction f dans un repère du plan. La courbe $\mathscr C$ est donnée ci-dessous :



1. a. Étudions la limite de f en 0.

On sait que $\lim_{x\to 0} \ln(x) = -\infty$ donc $\lim_{x\to 0} 1 + \ln(x) = -\infty$.

D'autre part $\lim_{x\to 0} \frac{1}{x^2} = +\infty$, alors par produit des limites, $\lim_{x\to 0} f(x) = -\infty$

b. On sait que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$,

D'autre part $\lim_{x\to +\infty} \frac{1}{x} = 0$, alors par produit des limites $\lim_{x\to +\infty} \frac{\ln x}{x^2} = 0$,

On a aussi $\lim_{x\to +\infty} \frac{1}{x^2} = 0$, et en ajoutant ces deux dernières limites, on obtient : $\lim_{x\to +\infty} f(x) = 0$

c. $\lim_{x\to 0} f(x) = -\infty$ prouve que l'axe des ordonnées est asymptote verticale .

 $\lim_{x \to +\infty} f(x) = 0$ que l'axe des abscisses est asymptote horizontale. à ${\mathscr C}$ **2. a.** On note f' la fonction dérivée de la fonction f sur l'intervalle]0; $+\infty[$. f est dérivable sur]0; $+\infty[$,

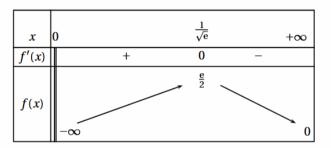
$$f'(x) = \frac{\frac{1}{x} \times x^2 - (1 + \ln x)}{x^4} = \frac{-x - 2x \ln x}{x^4} = \frac{-1 - 2\ln(x)}{x^3}.$$

b. $-1 - 2\ln x > 0 \iff \ln x < -\frac{1}{2} \iff x < e^{-\frac{1}{2}}.$

Pour tout $x \in]0$; $+\infty[$, $x^2 > 0$ et f'(x) est du signe de $-1 - 2\ln(x)$.

c. Dresser le tableau des variations de la fonction f.

On a
$$f\left(e^{-\frac{1}{2}}\right) = \frac{1 - \frac{1}{2}}{\left(e^{-\frac{1}{2}}\right)^2} = \frac{\frac{1}{2}}{e^{-1}} = \frac{e}{2}$$



3. a. On a: $f(x) = 0 \iff 1 + \ln x = 0 \iff \ln x = -1 \iff x = e^{-1}$ Ce qui prouve que la courbe \mathscr{C} coupe l'axe des abscisses en un unique point, le point de coordonnées $\{e^{-1}; 0\}$

b. D'après le tableau des variations de f et sachant que $f(e^{-1}) = 0$. On en déduit que f(x) > 0 sur l'intervalle e^{-1} ; e^{-1} et e^{-1} of sur l'intervalle e^{-1} of e^{-1} et e^{-1} of e^{-1} of e^{-1} et e^{-1} of e^{-1} et e^{-1} of e^{-1} et e^{-1} of e^{-1} et e^{-1} et

4. Pour tout entier $n \ge 1$, on note I_n l'aire, exprimée en unités d'aires, du domaine délimité par l'axe des abscisses, la courbe $\mathscr C$ et les droites d'équations respectives $x = \frac{1}{e}$ et x = n.

a. On sait que f > 0 sur $]e^{-1}$; $+\infty[$, donc $I_n = \int_{e^{-1}}^n f(x) dx$

Sur $\left[\frac{1}{e};2\right]$ on a au vu des variations de $f:0 < f(x) \leqslant \frac{e}{2}$. Comme l'intégration conserve l'ordre et le signe, on en déduit :

 $0 \leqslant I_2 \leqslant \int_{e^{-1}}^n \frac{e}{2} dx = \frac{e}{2} \left(2 - \frac{1}{e} \right) = e - \frac{1}{2}$ et finalement : $0 \leqslant I_2 \leqslant e - \frac{1}{2}$.

b. Calculons I_n en fonction de n. On a :

$$I_n = \left[\frac{-2 - \ln x}{x} \right]_0^n = \frac{-2 - \ln n}{n} - \left(\frac{-2 - \ln(e^{-1})}{e^{-1}} \right) = \frac{-2 - \ln n}{n} - (-2 + 1)e^{-1}$$

Et finalement :
$$I_n = \frac{-2 - \ln n}{n} + e = e - \frac{\ln n}{n} - \frac{2}{n}$$

c. Étudions la limite de I_n en $+\infty$.

On a
$$\lim_{n\to +\infty}\frac{\ln n}{n}=0$$
, $\lim_{n\to +\infty}\frac{1}{n}=0$ et $\lim_{n\to +\infty}\frac{2}{n}=0$ alors $\lim_{n\to +\infty}I_n=e$. Graphiquement cela signifie que l'aire du domaine délimité par l'axe des abscisses, la

courbe \mathscr{C} et les droites d'équations respectives $x = \frac{1}{e}$ et x = n tend vers e quand n tend vers $+\infty$.