Lois à densité. Loi normale

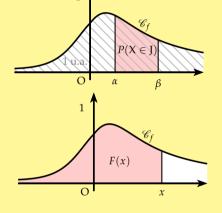
1 Lois à densité

1.1 Généralités

Définition 1 On appelle **densité de probabilité** d'une variable aléatoire continue X, la fonction f continue et positive sur un intervalle I ([a;b], $[a;+\infty[$ ou $\mathbb R)$ telle que :

- $P(X \in I) = \int_{(I)} f(t) dt = 1$
- Pour tout intervalle $J = [\alpha, \beta]$, on a: $P(X \in J) = \int_{\alpha}^{\beta} f(t) dt$
- La fonction F définie par : $F(x) = P(X \le x)$ est appelée la **fonction de répartition** de la variable X

$$F(x) = \int_{-\infty}^{x} f(t) dt$$



• L'espérance mathématique d'une variable aléatoire continue X, de densité *f* sur I, est :

$$E(X) = \int_{(I)} t f(t) dt$$

1.2 Loi uniforme

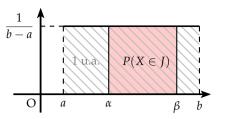
Définition 2 X suit une loi uniforme sur I = [a, b], alors :

$$f(t) = \frac{1}{b-a}$$

Pour tout intervalle $J = [\alpha, \beta]$ inclus dans I, on a :

$$P(X \in J) = \frac{\beta - \alpha}{b - a} = \frac{\text{longueur de } J}{\text{longueur de } I}$$

La probabilité est proportionnelle à la longueur de l'intervalle.



1.3 Loi exponentielle

Définition 3 X suit une loi exponentielle de paramètre réel λ alors : $f(t) = \lambda e^{-\lambda t}$

On a les relations suivantes

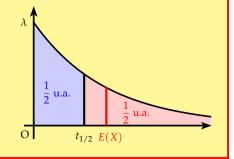
- La fonction de répartition : $F(x) = 1 e^{-\lambda x}$
- $P(X \le a) = 1 e^{-\lambda a}$ et $P(X \ge a) = e^{-\lambda a}$
- $P(a \leqslant X \leqslant b) = F(b) F(a) = e^{-\lambda a} e^{-\lambda b}$

Théorème 1 La loi exponentielle est une loi sans mémoire

$$\forall t > 0 \text{ et } h > 0 \quad \text{on a} \quad P_{X \ge t}(X \ge t + h) = P(X \ge h)$$

Théorème 2 X suit une loi exponentielle de paramètre λ alors :

- l'espérance : $E(X) = \frac{1}{\lambda}$
- La demi vie : $t_{1/2} = \frac{\ln 2}{\lambda}$
- $E(X) = \frac{t_{1/2}}{\ln 2} \simeq 1,44 t_{1/2}$



2 La loi normale

2.1 La loi normale centrée réduite

Définition 4 On appelle densité de probabilité de Laplace-Gauss, la fonction φ définie sur $\mathbb R$ par :

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

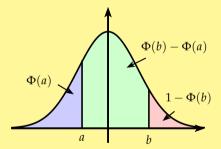
X suit une loi normale centrée réduite, $\mathcal{N}(0,1)$, si sa densité de probabilité est égale à la fonction φ .

Sa fonction de répartition Φ vaut : $\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$

L'espérance de X vaut 0 et son écart-type 1 d'où $\mathcal{N}(0,1)$

Théorème 3 X suit la loi $\mathcal{N}(0,1)$ alors pour tous réels a et b>a on a :

- $P(X \leqslant a) = \Phi(a)$
- $P(X \geqslant b) = 1 \Phi(b)$
- $P(a \leq X \leq b) = \Phi(b) \Phi(a)$
- $P(X \le -|a|) = 1 \Phi(|a|)$



Théorème 4 X est une variable aléatoire qui suit un loi normale centrée réduite. Soit $\alpha \in]0;1[$, il existe un **unique** réel **strictement positif** u_{α} tel que :

 $P(-u_{\alpha} \leqslant X \leqslant u_{\alpha}) = 1 - \alpha$

Il est bon de retenir les valeurs de $u_{0,05}$ et $u_{0,01}$:

- $P(-1.96 \le X \le 1.96) = 0.95$
- $P(-2.58 \leqslant X \leqslant 2.58) = 0,99$

2.2 La loi normale générale

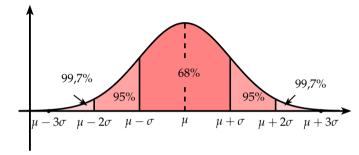
Définition 5 Changement de variable

X suit une loi normale de paramètres $\mathcal{N}(\mu, \sigma^2)$, alors :

$$Z = \frac{X - \mu}{\sigma}$$
 suit une loi normale $\mathcal{N}(0, 1)$

On a alors : $E(X) = \mu$ et $V(X) = \sigma^2$

On obtient les intervalles caractéristiques :



2.3 Approximation normale d'une loi binomiale

Théorème 5 Théorème de Moivre-Laplace

X suit la loi binomiale $\mathcal{B}(n, p)$ et Z tel que :

$$Z = \frac{X - E(X)}{\sigma(X)} = \frac{X - np}{\sqrt{np(1 - p)}}$$

Pour tous nombres a et b tels que a < b, on a :

$$\lim_{n \to +\infty} P(a \leqslant Z \leqslant b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Conditions de l'approximation d'une loi binomiale $\mathcal{B}(n,p)$ par une loi normale $\mathcal{N}(np,np(1-p))$

$$n \geqslant 30$$
, $np \geqslant 5$ et $n(1-p) \geqslant 5$

 \land Faire la correction de continuité : $P(7 \le X \le 15) = P_N(6, 5 \le X \le 15.5)$