1ere S

Exercices: Tableaux d'avancement - Correction

Déc 2017

Ex 1 : QCM

 $^{-}$ S + $^{-}$ O₂ \rightarrow $^{-}$ SO₂

6 $4 \cdot P + 5 \cdot O_2 \rightarrow 2 \cdot P_2O_5$

6 $4 \cdot \text{Fe} + 3 \cdot \text{O}_2 \rightarrow 2 \cdot \text{Fe}_2\text{O}_3$

Bien

Bien

Bien

Ex 2:

corrigé
$$C_3H_8 + 5 O_2 \text{ donne } 3 CO_2 + 4 H_2O$$

	propane	dioxygène	dioxyde de carbone	eau
initial t=0	2 mol	7 mol	0	0
en cours	2-x	7-5x	3 x	4 x
final	2-1,4 = 0,6 mol	0	3*1,4 = 4,2 mol	4*1,4 =5,6 mol

avancement maximal : l'un au moins des réactifs a disparu

soit 2-x =0 -->
$$x=2 \text{ mol}$$

soit
$$7-5x = 0 --> x=1,4 \text{ mol}$$

on retient la plus petite valeur: elle correspond à l'avancement maximal

Le propane est en excès et la réaction s'arrète lorsque tout le dioxygène est consommé.

la composition finale du mélange est donnée par la dernière ligne du tableau.

	propane	dioxygène	dioxyde de carbone	eau
initial t=0	1,5 mol	7 ,5mol	0	0
en cours	1,5-x	7,5- 5 x	3 x	4 x
final	0	0	3*1,5 = 4,5 mol	4*1,5 = 6 mol

avancement maximal : l'un au moins des réactifs a disparu

soit
$$1.5-x = 0 --> x = 1.5 \text{ mol}$$

soit
$$7.5-5x = 0 --> x=1.5 \text{ mol}$$

valeur identique: elle correspond à l'avancement maximal

Le propane est le dioxygène sont en proportions stoéchiomètriques

Ex 3:

corrigé
$2 \text{ H}_2\text{S} + \text{SO}_2$ donne $3 \text{ S} + 2 \text{ H}_2\text{O}$

	H ₂ S	SO ₂	soufre	eau
initial t=0	5 mol	4 mol	0	0
en cours	5-2 x	4 - x	3 x	2 x
final	0	4-2,5 = 1,5 mol	3*2,5 = 7,5 mol	2*2,5 =5 mol

avancement maximal : l'un au moins des réactifs a disparu

soit
$$5-2x = 0 --> x = 2,5 \text{ mol}$$

soit
$$4-x = 0 --> x=4 \text{ mol}$$

on retient la plus petite valeur: elle correspond à l'avancement maximal SO₂ est en excès et la réaction s'arrète lorsque tout H₂S est consommé.

la composition finale du mélange est donnée par la dernière ligne du tableau.

	H ₂ S	SO ₂	soufre	eau
initial t=0	n mol	3,5 mol	0	0
en cours	n-2 x	3,5 - x	3 x	2 x
final	0	0	3*2,5 = 7,5 mol	2*2,5 =5 mol

avancement maximal : les deux réactifs ont disparu (conditions stoéchiomètriques)

soit
$$3.5-x = 0 --> x = 3.5 \text{ mol}$$

et
$$n-2 x = 0 --> n = 2x = 7 \text{ mol}$$

Ex 4:

$$C_2H_6O + 3 O_2 donne 2 CO_2 + 3 H_2O$$

les quantités de matière (mol) des réactifs initiaux sont stoéchiométriques.

à partir de 0,2 mol d'éthanol, 3 *0,2 = 0,6 mol de dioxygène sont nécessaires.

On obtient alors : $2 *0.2 = 0.4 \text{ mol CO}_2$ et $3 *0.2 = 0.6 \text{ mol H}_2\text{O}$

soit en masse : 0.4*(12+16*2) = 17.6 g CO₂ et 0.6(2+16) = 10.8 g d'eau.

volume de dioxygène : 0.6 * 25 = 15 L

Quantités initiales des réactifs :

alcool (masse molaire: 2*12+6+16)=46 g/mol): 2,3 /46 = 0,05 mol

dioxygène : 1,5 / 25 = 0,06 mol

	C ₂ H ₆ O	O ₂	CO ₂	eau
initial t=0	0,05 mol	0,06 mol	0	0
en cours	0,05- x	0,06 - 3 x	2 x	3 x
final	0.05-0.02 = 0.03 mol	0	2*0,02 =0,04 mol	3*0,02=0,06 mol

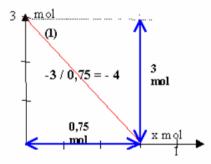
avancement maximal : l'un au moins des réactifs a disparu

soit
$$0.05-x=0 --> x=0.05 \text{ mol}$$

soit
$$0.06-3x = 0 --> x=0.02 \text{ mol}$$

on retient la plus petite valeur: elle correspond à l'avancement maximal

C₂H₆O est en excès et la réaction s'arrète lorsque tout O₂ est consommé.


la composition finale du mélange est donnée par la dernière ligne du tableau.

Ex 5:

 $Fe_3O_4 + 4 CO donne 3 Fe + 4 CO_2$

coefficient directeur

de même pour les autres droites : (2) donne -1 / 1 = -1

(3) donne : 3 / 0.75 = 4; (4) donne : 3/1 = 3

les valeurs absolues des coefficients directeurs correspondent aux nombres stoéchiométriques.

produits: 0 mol réactifs: 3 mol CO 1) 2,25 mol Fe 0,75 mol CO limitant

CO : entirement consommé : l'avancement maximale correspond à 0,75 mol