1^{ère} spécialité maths

TD (avec corrigés) - Équations chimiques

Ex 1 On verse dans un bécher $V=20,0\,\text{ mL}\,$ d'une solution de nitrate d'argent contenant des ions argent (I) $(Ag^+(aq))$ et des ions nitrate $(NO_3^-(aq))$, telle que $[Ag^+]=[NO_3^-]=0,15\,\text{mol.L}^{-1}$. On y ajoute 0,127 g de poudre cuivre. La solution initialement incolore devient bleue et il se forme un dépôt d'argent. Les ions nitrates n'interviennent pas dans la réaction.

- a) Ecrire l'équation chimique modélisant la réaction.
- b) Décrire l'état initial du système en quantité de matière.
- c) Trouver le réactif limitant et calculer l'avancement maximal.
- d) Décrire l'état final du système en quantité de matière.
- e) Déterminer, à l'état final:
- les concentrations molaires des ions en solution ;
- les masses du (ou des) solide(s) présent(s).

 $\begin{array}{ll} \textbf{Correction 1:} & C_{Ag+} = 0.15 \ mol.L^{-1} \ ; \ V_{Ag+} = 20 \ mL \ ; \ m_{Cu} = 0.127 \ g \ ; \ M_{Cu} = 63.5 \ g.mol^{-1} \ ; \ M_{Ag} = 107.9 \ g.mol^{-1} \end{array}$

a)
$$2 \text{ Ag}^+ + \text{Cu} \rightarrow 2 \text{ Ag} + \text{Cu}^{2+}$$

b) Etat initial en quantité de matière : $n_{Ag+} = C.V = 0.15 \times 20.10^{-3} = 3.10^{-3}$ mol

$$n_{Cu} = m_{Cu} \ / \ M_{Cu} = 0,127 \ / \ 63,5 = \textbf{2.10}^{\textbf{-3}} \ \textbf{mol}$$

c)d)

Tableau d'avancement de la transformation :

	2 Ag ⁺ + Cu ²⁺	+ Cu	. >	2 Ag
Etat initial $x = 0 \text{ mol}$	3.10 ⁻³	2.10 ⁻³	0	0
En cours de transformation	3.10 ⁻³ - 2x	2.10 ⁻³ - x	2 x	Х
Etat final $x_{max} = 1,5.10^{-3}$ mol	0	5.10 ⁻⁴	3.10 ⁻³	1,5.10 ⁻³

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si Ag+ est le réactif limitant : $3.10^{-3} - 2x = 0 \Rightarrow x = 1,5.10^{-3} \text{ mol}$

Si Cu est le réactif limitant : $2.10^{-3} - x = 0 \Rightarrow x = 2.10^{-3}$ mol

Par conséquent $x_{max} = 1,5.10^{-3}$ mol et le réactif limitant est Ag^+ .

A l'état final on a : 0 mole de Ag⁺ ; 5.10⁻⁴ mole de Cu ; 3.10⁻³ mole de Ag et 1,5.10⁻³ mole de Cu²⁺.

e) Concentration molaire des ions en solution :

Dans la solution il y a des ions Cu²⁺ et des ions NO₃-.

les ions NO₃ n'ont pas réagi ,le volume n'a pas été modifié donc

$$[NO_3] = 1.5.10^{-1} \text{ mol.L}^{-1}$$

$$[Cu^{2+}] = n_{Cu^{2+}} / V = 1.5.10^{-3} / 20.10^{-3} = 7.5.10^{-2} \text{ mol.l}^{-1}$$

$$[Cu^{2+}] = 7,5.10^{-2} \text{ mol.L}^{-1}$$

On peut remarquer que $[Cu^{2+}] = [NO_3^-] / 2$ et la charge de l'ion Cu^{2+} est 2 fois celle de NO_3^- ; la solution est électriquement neutre.

- $\underline{\mathbf{Ex}\ 2}$ Le premier étage de la fusée Ariane IV est équipé de moteurs Viking qui utilisent la diméthylhydrazine (DMHA), de formule $C_2H_8N_2$, comme combustible et le tétraoxyde de diazote, de formule N_2O_4 comme comburant. Ces éspèces chimiques réagissent entre elles à l'état gazeux. La réaction donne du diazote, de l'eau et du dioxyde de carbone, tous à l'état gazeux. La fusée emporte 50,0 tonnes de DHMA et une masse m de N_2O_4 .
- a) Ecrire l'équation chimique modélisant la réaction.
- b) Calculer la quantité de matière de DHMA emportée.
- c) On note n la quantité de matière de N₂O₄. Décrire l'état final du système en quantité de matière.
- d) Faire un tableau d'évolution du système et en déduire la quantité de matière n de N_2O_4 à emporter pour que le mélange initial soit stoechiométrique.
- e) Déterminer dans ces conditions, les volumes des gaz expulsés par le moteur.

Donnée : volume molaire : 90 L.mol⁻¹.

Correction 2 m $_{DHMA} = 50 \text{ t}$; m $(N_2O_4) = ?$

a)
$$2 N_2O_4 + C_2H_8N_2 \rightarrow 3 N_2 + 4 H_2O + 2 CO_2$$

b) On cherche n_{DHMA}

$$m = 50 t = 50.10^3 kg = 50.10^3.10^3 g = 50.10^6 g$$

$$M(C_2H_8N_2) = 2 \times 12 + 8 \times 1 + 2 \times 14 = 60 \text{ g.mol}^{-1}$$

$$n_{DHMA} = 50.10^6 \ / \ 60 = \textbf{8,33.10}^{\textbf{5}} \ \textbf{mol}$$

c)d) Tableau d'avancement de la transformation :

	2 N ₂ O ₄ H ₂ O +	+ C ₂ H ₈ N ₂ 2 CO ₂	· -> :	3 N ₂ +	4
Etat initial x = 0 mol	n	8,33.10 ⁵	0	0	0
En cours de transformation	n - 2x	8,33.10 ⁵ - x	3 x	4x	2x
Etat final $x_{max} = 8,33.10^{5}$ mol	0	0	2,55.10 ⁶	3,33.10 ³	1,67.10 ⁶

Recherche de l'avancement maximal x_{max} et du réactif limitant :

La DHMA est totalement consommée (c'est le combustible d'une fusée et pour un gain de masse il ne doit pas en rester à la fin) donc : $8,33.10^5 - x = 0 \Rightarrow x = 8,33.10^5$ mol

Par conséquent $x_{max} = 8,33.10^5$ mol.

A l'état final on a : 0 mole de N_2O_4 ; 0 mole de $C_2H_8N_2$; 2,55.10 mole de N_2 ; 3,33.10 mole de H_2O et 1,67.10 mole de CO_2 .

d) A la fin de la réaction il ne reste plus de N_2O_4 donc n-2 $x_{max}=0$

$$n = 2 x_{max} => n = 2 \times 8,33.10^5 = 1,67.10^6 \text{ mol.}$$

e) Tout les produits de la réaction sont des gaz ; on a donc $V=n.V_{\rm m}$

Pour
$$N_2$$
: $V(N_2) = 2,55.10^6 \times 90 = 2,25.10^8 L$

Pour
$$H_2O : V(H_2O) = 3.10^8 L$$

Pour
$$CO_2$$
: $V(CO_{2-}) = 1,5.10^8 L$

 $\underline{Ex\ 3}$ L'éthanol, liquide incolore, de formule C_2H_6O brûle dans le dioxygène pur. Il se forme du dioxyde de carbone et de l'eau. On fait réagir m=2,50 g d'éthanol et un volume V=2,0 L de dioxygène.

- a) Ecrire l'équation chimique modélisant la réaction.
- b) Décrire l'état initial du système.
- c) Calculer l'avancement maximal.
- d) Quel est le réactif limitant ?
- e) Déterminer la composition, en quantité de matière, du système à l'état final.

Donnée : volume molaire dans les conditions de l'expérience : 25 L.mol⁻¹.

Correction 3 m $(C_2H_6O) = 2,50 \text{ g}$; $V(O_2) = 2L$

a)
$$C_2H_6O + 3 O_2 \rightarrow 3 H_2O + 2 CO_2$$

b) On cherche
$$n(C_2H_6O)$$
 $m = 2,50 \text{ g}$ $M(C_2H_6O)) = 2 \times 12 + 6 \times 1 + 16 = 46 \text{ g.mol}^{-1}$

$$n(C_2H_6O) = 2.5 / 46 = 5.43.10^{-2} \text{ mol}$$

On cherche $n(O_2)$:

$$O_2$$
 est un gaz donc $n = V / V_m$ $n(O_2) = 2 / 25 = 8.10^{-2}$ mol

c)d)e)

Tableau d'avancement de la transformation :

	C ₂ H ₆ O	+ 3 0 ₂	→ 3 H ₂ O	+ 2
Etat initial $x = 0 \text{ mol}$	5,43.10 ⁻²	8.10 ⁻²	0	0
En cours de transformation	5,43.10 ⁻² - x	8.10 ⁻² - 3 x	3 x	2 x
Etat final $x_{max} = 2,67.10^{-2}$ mol	2,77.10 ⁻²	0	8.10 ⁻²	5,33.10 ⁻²

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si C_2H_6O est le réactif limitant : 5,43.10⁻² – $x=0 => x=5,43.10^{-2}$ mol

Si O_2 est le réactif limitant : $8.10^{-2} - 3 \text{ x} = 0 => x = 2,67.10^{-2} \text{ mol}$

Par conséquent $x_{max} = 2,67.10^{-2}$ mol et le réactif limitant est O_2

A l'état final on a : $2,77.10^{-2}$ mole de C_2H_6O ; 0 mole de O_2 ; 8.10^{-2} mole de H_2O et $5,33.10^{-2}$ mole de CO_2

 $\underline{\mathbf{Ex}}$ 4 Un des constituants principaux de l'essence est l'heptane, alcane de formule brute C_7H_{16} . Un réservoir de voiture contient 42 L d'essence que l'on assimilera à l'heptane pur (densité d=0,755). On admettra que la carburation est parfaite, que l'essence est intégralement brûlée, et qu'il se forme exclusivement du dioxyde de carbone et de la vapeur d'eau.

- a) Ecrire l'équation chimique modélisant la réaction.
- b) Quel est le volume de dioxygène nécessaire à la combustion de la moitié du réservoir ?
- c) Quel est le volume de dioxygène nécessaire à la combustion de la totalité du réservoir ?
- d) Quel est alors le volume de dioxyde de carbone (pour la totalité) ?

Donnée : volume molaire dans les conditions de l'expérience : 25 L.mol⁻¹.

Correction 4:

V = 42 L essence liquide C_7H_{16} (d= 0,755)

a)
$$C_7H_{16} + 11 O_2 \rightarrow 7 CO_2 + 8 H_2O$$

b) La moitié du réservoir : 21 L

Calcul de n :
$$m = d \times V = 0.755 \times 21 = 15.8 \text{ Kg}$$
 $M(C_7H_{16}) = 7 \times 12 + 16 \times 1 = 100 \text{ g.mol}^{-1}$

$$n = 15, 5.10^3 \ / \ 100 = 1, 58.10^2 \ mol$$

Tableau d'avancement de la transformation :

	C ₇ H ₁₆ H ₂ O	+ 11 0 ₂	→ 7 CO ₂	+ 8
Etat initial $x = 0 \text{ mol}$	1,58.10 ²	n	0	0
En cours de transformation	1,58.10 ² - x	n - 11 x	7 x	8 x
Etat final $x_{max} = 1,58.10^{2}$ mol	0	0	1,11.10 ³	1,27.10 ³

Recherche de l'avancement maximal x_{max}:

Tous le carburant est brûlé donc $1,58.10^2 - x = 0$

Par conséquent $x_{max} = 1,58.10^2$ mol

On recherche le volume de O2 nécessaire :

On a donc :
$$n - 11 x_{max} = 0 \Rightarrow n = 11 \times 1,58.10^2 = 1,74.10^3 \text{ mol}$$

 $O_2 \ est \ un \ gaz \ donc$: $V=n\times V_m$

$$V(O_2) = 4,36.10^4 L$$

- c) Pour la totalité du réservoir on a besoin du double de O_2 soit $\bf 8,72.10^4~L$
- d) Pour la moitié du réservoir il s'est dégagé : $1,11.10^3$ mol de CO_2 donc pour la totalité il va s'en dégagé le double soit : $2,22.10^3$ mol

 CO_2 est un gaz donc : $\boldsymbol{V} = \boldsymbol{n} \times \boldsymbol{V}_m$

$$V (CO_2) = 5,55.10^4 L$$

<u>Ex 5</u>

L'addition de quelques gouttes d'une solution aqueuse de soude (contenant l'ion hydroxyde HO^-) à une solution aqueuse de sulfate de fer (contenant l'ion fer Fe^{3+}) fait apparaître un précipité d'hydroxyde de fer $Fe(OH)_3$.

L'équation de cette transformation s'écrit : 3 HO + Fe³⁺ --> Fe(HO)₃.

Nous utilisons 20 mL de solution de sulfate de fer de concentration $0,12 \text{ mol.L}^{-1}$ et 2 mL de solution de soude de concentration $0,5 \text{ mol.L}^{-1}$.

A l'aide d'un tableau d'avancement déterminez :

- a) Les quantités de matière initiales d'ions hydroxyde HO et d'ions fer Fe³⁺.
- b) Les quantités de matière des réactifs et du produit dans l'état final
- c) Déterminer les quantités de matière de chaque réactif quand il s'est formé 2.10⁻⁴ mol d'hydroxyde de fer Fe(HO)₃.

Correction 5:

$$3 \text{ HO}^{-} + \text{Fe}^{3+} \rightarrow \text{Fe}(\text{HO})_3$$

a) Calculons les quantité de matière à l'état initial : n = C . V

$$n(HO^{-}) = 0.5 \times 2.10^{-3} = 10^{-3} \text{ mol}$$
 $n(Fe^{3+}) = 0.12 \times 20.10^{-3} = 2.4.10^{-3} \text{ mol}$

Tableau d'avancement de la transformation :

	3 HO ⁻	+ Fe ³⁺	→ Fe(HO) ₃
Etat initial $x = 0 \text{ mol}$	10 ⁻³	2,4.10 ⁻³	0
En cours de transformation	10 ⁻³ - 3x	2,4.10 ⁻³ - x	Х
Etat final $x_{max} = 3,3.10^{-4}$ mol	0	2,01.10 ⁻³	3,3.10 ⁻⁴

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si
$$HO^{-}$$
 est le réactif limitant : $10^{-3} - 3x = 0 => x = 3,3.10^{-4}$ mol

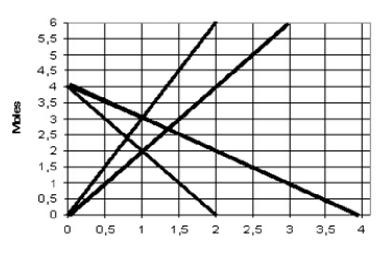
Si Fe³⁺ est le réactif limitant :
$$2,4.10^{-3} - x = 0 => x = 2,4.10^{-3} \text{ mol}$$

Par conséquent $x_{max} = 3,3.10^{-4}$ mol et le réactif limitant est HO $^{-}$.

A l'état final on a : 0 mole de HO^- ; 2,01.10⁻³ mole de Fe^{3+} ; 3,3.10⁻⁴ mole de $Fe(HO)_3$.

b) On cherche la quantité de réactif lorsque $x = 2.10^{-4}$ mol

$$HO^{-}$$
: $n = 10^{-3} - 3 \times 2.10^{-4} = 4.10^{-4} \text{ mol}$

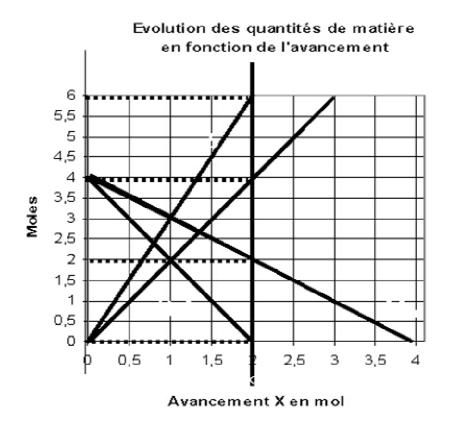

$$Fe^{3+}$$
: $n = 2,4.10^{-3} - 2.10^{-4} = 2,2.10^{-3} \text{ mol}$

<u>Ex 6</u>

La réaction entre l'hydrogène sulfureux (H₂S) et le dioxyde de soufre (SO₂) produit du soufre et de l'eau.

Ci-dessous le graphique représentant l'évolution des quantités de matière en fonction de l'avancement.

Evolution des quantités de matière en fonction de l'avancem ent



Avancement X en m ol

Correction 6:

Réactifs: H₂S; SO₂. Produits: S; H₂O

Equation chimique : $2 H_2S + SO_2 \rightarrow 3 S + 2 H_2O$

 H_2S et SO_2 sont des réactifs donc les droites décroisse. H_2S disparaît plus vite que SO_2 donc la droite représentant H_2S décroît plus vite.

S et H₂O sont produits donc les droites doivent monter.

S est produit plus rapidement que H₂O donc sa droite doit croître plus rapidement.

c) Par lecture graphique

Etat initial : x = 0 mol

$$n(SO_2) = 4 \text{ mol}$$

$$n(H_2S) = 4 \text{ mol}$$

$$n(S) = 0 \text{ mol}$$

$$n(H_2O) = 0 \text{ mol}$$

Réactif limitant : H₂S (il arrive à 0 en premier)

$$x_{max} = 2 \text{ mol (lorsque } H_2S = 0 \text{ mol)}$$

Etat final : $x_{max} = 2 \text{ mol}$

$$n(SO_2) = 2 \text{ mol}$$
; $n(H_2S) = 0 \text{ mol}$; $n(S) = 6 \text{ mol}$; $n(H_2O) = 4 \text{ mol}$

<u>Ex7</u>

Une bouteille de gaz butane contient 40.0 kg de gaz de formule C_4H_{10} .

- a) Ecrire l'équation chimique de la combustion complète de ce gaz.
- b) Réaliser le tableau d'avancement et déterminer le volume de gaz nécessaire à cette combustion et le volume des gaz produits. Donnée : volume molaire dans les conditions de l'expérience : 25,0 L.mol⁻¹.

Correction 7:

Butane : C_4H_{10} ; 40 kg ; Vm = 25 L.mol⁻¹

a) Equation chimique : $2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$

b) Tableau d'avancement de la transformation :

Déterminons les quantités de matière à l'état initial :

$$m(C_4H_{10}) = 40 \text{ kg} = 40.10^3 \text{ g}; M(C_4H_{10}) = 4 \times 12 + 10 \times 1 = 58 \text{ g.mol}^{-1}$$

$$n(C_4H_{10}) = m / M => n = 40.10^3 / 58 = 689,6 \text{ mol}$$

	2 C ₄ H ₁₀ H ₂ O	+ 13 0 ₂	→ 8 CO ₂	+ 10
Etat initial $x = 0 \text{ mol}$	689,6	n	0	0
En cours de transformation	689,6 - 2x	n - 13x	8 x	10 x
Etat final $x_{max} = 344.8 \text{ mol}$	0	0	2,76.10 ³	3,45.10 ³

Recherche de l'avancement maximal x_{max}:

Tout le butane est consommé : $689.2 - 2x = 0 \Rightarrow x_{max} = 344.8$ mol

Volume de O2 nécessaire :

$$n - 13x = 0 \Rightarrow n = 13x \Rightarrow n = 13 \times 344, 8 = 4,48.10^3 \text{ mol}$$

$$V = n \times Vm => V(O_2) = 1,12.10^5 L = 112 m^3$$

Volume de gaz produit :

$$V(CO_2) = 2,76.10^3 \times 25 = 6,90.10^4 L = 69 \text{ m}^3$$

$$V(H_2O) = 3,45.10^3 \times 25 = 8,62.10^4 L = 86,2 m^3$$

Ex 8

Dans un bécher 1, on introduit un volume $V_1 = 30.0$ mL de solution de chlorure de calcium,

 $Ca^{2+}_{(aq)}+2Cl^{-}_{(aq)}$, de concentration $C_1=0.15 \text{ mol.L}^{-1}$ en ions calcium et $C'_1=0.30 \text{ mol.L}^{-1}$ en ions chlorure.

Dans un bécher 2, on introduit un volume $V_2 = 20.0$ mL de solution de phosphate de sodium $3Na^+_{(aq)} + PO_4^{3-}_{(aq)}$, de concentration $C_2 = 0.10$ mol.L⁻¹ en ions phosphate et $C'_2 = 0.30$ mol.L⁻¹ en ions sodium.

On mélange dans un bécher 3 le contenu des deux béchers 1 et 2 et on observe l'apparition d'un précipité blanc de phosphate de calcium.

- 1)a) Déterminer les quantités d'ions calcium et chlorure présents dans le bécher 1.
- b) Quelle relation existe-t-il entre C₁ et C'₁? Comment peut-on l'expliquer?
- 2) Déterminer les quantités d'ions sodium et phosphate présents dans le bécher 2.
- 3) Décrire l'état du système chimique contenu dans le bécher 3 avant la transformation chimique.
- 4)a) Sachant que le phosphate de calcium est constitué d'ions calcium et phosphate, établir la formule du précipité de phosphate de calcium.
- b) Ecrire l'équation chimique de la réaction qui modélise cette transformation.
- 5) A l'aide d'un tableau d'avancement, déterminer l'avancement final et le réactif limitant.
- 6) a) Décrire l'état final du système présent dans le bécher 3.
- b) Quelles sont les concentrations des différents ions présents dans la solution ?

Correction 8:

1) a) Déterminons les quantités d'ions présents dans le bécher 1.

$$C = n / V$$
 donc $n = C.V$

Pour
$$Ca^{2+}$$
: $n(Ca^{2+}) = 0.15 \times 30.10^{-3} = 4.5.10^{-3}$ mol

Pour Cl⁻ :
$$n(Cl^{-}) = 0.30 \times 30.10^{-3} = 9.10^{-3} \text{ mol}$$

b) L'ion calcium porte une charge 2+ tandis que l'ion chlorure porte une charge 1-.

On a donc : $C'_1 = 2 C_1$; la solution est électriquement neutre il faut donc deux fois plus d'ions chlorure que d'ions calcium.

2) Déterminons les quantités d'ions présents dans le bécher 2.

Pour
$$Na^+$$
: $n(Na^+) = 0.3 \times 20.10^{-3} = 6.10^{-3}$ mol

Pour
$$PO_4^{3-}$$
: $n(PO_4^{3-}) = 0.1 \times 20.10^{-3} = 2.10^{-3}$ mol

3) Avant la transformation chimique on a un volume de solution de 50 mL et :

Ca ²⁺	CI ⁻	Na ⁺	PO_{4}^{3-}

4,5.10 ⁻³ mol	9.10 ⁻³ mol	6.10 ⁻³ mol	2.10 ⁻³ mol

4)a)Le précipité est électriquement neutre : il faut donc 3 ions calcium pour 2 ions phosphate.

Formule : $Ca_3(PO_4)_2$

b)
$$3Ca^{2+} + 2PO_4^{3-} \rightarrow Ca_3(PO_4)_2$$

5) Tableau d'avancement de la transformation :

	3Ca ²⁺	+ 2 PO ₄ ³⁻	→ Ca ₃ (PO ₄) ₂
Etat initial	4.5.40-3	2.40-3	
	4,5.10 ⁻³	2.10 ⁻³	0
x = 0 mol			
En cours de transformation			
transformation	4,5.10 ⁻³ – 3x	2.10 ⁻³ - 2 x	Х
Х			
Etat final	_		_
	1,5.10 ⁻³	0	10 ⁻³
$x_{max} = 10^{-3} \text{ mol}$			

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si
$$Ca^{2+}$$
 est le réactif limitant :4,5.10⁻³ – 3x = 0 => x = 1,5.10⁻³ mol

Si
$$PO_4^{3-}$$
 est le réactif limitant : $2.10^{-3} - 2x = 0 => x = 10^{-3}$ mol

Par conséquent $x_{max} = 10^{-3}$ mol et le réactif limitant est PO_4^{3} .

- 6) A l'état final on a : 1,5.10 $^{\text{-3}}$ mole de Ca $^{2+}$; 0 mole de PO $_4$ $^{3-}$; 10 $^{\text{-3}}$ mole de Ca $_3$ (PO $_4$) $_2$.
- 7) Calculons les concentrations des ions présents dans la solution. V = 50 mL

Les ions Na⁺ et Cl⁻ n'ont pas réagi.

$$C(Na^+) = 6.10^{-3} / 50.10^{-3} = 1,2.10^{-1} \text{ mol.L}^{-1}$$

$$C(Cl) = 9.10^{-3} / 50.10^{-3} = 1,8.10^{-1} \text{ mol.L}^{-1}$$

Il reste 1,5.10⁻³ mole d'ions Ca²⁺

$$C(Ca^{2+}) = 1,5.10^{-3} / 50.10^{-3} = 3.10^{-2} \text{ mol.L}^{-1}$$

On peut remarquer que:

$$C(Cl) = C(Na^{+}) + 2 \times C(Ca^{2+})$$

Ex 9

Dans un tube à essai, on introduit 0,60g d'aluminium en poudre et 6,0 mL de solution d'acide chlorhydrique, $H^+_{(aq)} + Cl^-_{(aq)}$, de concentration 1,0 mol. L^{-1} en ions H^+ . On observe un dégagement gazeux qui produit une légère détonation à l'approche d'une flamme.

Après quelques minutes, on filtre le mélange et on ajoute quelques gouttes de solution de soude au filtrat, on observe l'apparition d'un précipité blanc.

- 1) Quelle est la nature du gaz émis ?
- 2) Quel est l'ion mis en évidence par l'apparition du précipité ?
- 3)a) Quelles sont les espèces affectées par la transformation?
- b) Ecrire l'équation de la réaction chimique modélisant la transformation.
- 4)a) Quelles verreries a-t-on utilisé pour mesurer le volume de solution d'acide chlorhydrique ?
- b) Calculer les quantités de réactifs mis en jeu.
- 5)a) A l'aide d'un tableau d'avancement, déterminer l'avancement final et le réactif limitant.
- b) En déduire la quantité puis le volume de gaz dégagé.

$$V_m = 25 \text{ L.mol}^{-1}$$

Correction 9:

- 1) On observe une détonation à l'approche d'une flamme, le gaz est donc du dihydrogène.
- 2) L'addition de soude provoque la formation d'un précipité blanc ; il y a donc présence d'ions Al³⁺.
- 3)a) Les réactifs sont : l'aluminium Al et les ions H⁺.

b)
$$2Al + 6H^+ \rightarrow 2Al^{3+} + 3H_2$$

- 4)a) Il faut utilisé une pipette pour mesurer un volume de 6 mL (muni d'une propipette).
- b) On calcule les quantités de réactifs mis en jeu.

$$m(Al) = 0.6 g$$
; $M(Al) = 27 g.mol^{-1} et n = m / M$

$$n(Al) = 0.6 / 27 = 2.10^{-2} \text{ mol}$$

$$C(H^{+}) = 1 \text{ mol.L}^{-1}$$
; $V = 6 \text{ mL et } n = C.V$

$$n(H^+) = 1 \times 6.10^{-3} = 6.10^{-3} \text{ mol}$$

5)a)Tableau d'avancement de la transformation :

	2AI + 3 H ₂	+ 6 H ⁺	→	2 AI ³⁺
Etat initial	2,2.10 ⁻²	6.10 ⁻³	0	0

x = 0 mol				
En cours de transformation	2,2.10 ⁻² - 2x	6.10 ⁻³ - 6x	2 x	3 x
Etat final $x_{max} = 10^{-3} \text{ mol}$	2.10 ⁻²	0	2.10 ⁻³	3.10 ⁻³

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si Al est le réactif limitant :2,2. 10^{-2} – 2x = 0 => x = 1,1. 10^{-2} mol

Si H⁺ est le réactif limitant : $6.10^{-3} - 6x = 0 \Rightarrow x = 10^{-3}$ mol

Par conséquent $x_{max} = 10^{-3}$ mol et le réactif limitant est H⁺.

b) Il s'est formé : 3.10⁻³ mol de dihydrogène.

$$V = n.V_m => V(H_2) = 3.10^{-3} \times 25 = 0,075 L = 75 \text{ mL}$$

Ex 10

Lors de la synthèse de l'aspirine au laboratoire, on utilise 3,3g d'acide salicylique solide $C_7H_6O_3$ et 7,0 mL d'anhydride acétique $C_4H_6O_3$ liquide.

- 1) Calculer les quantités de ces deux réactifs dans l'état initial.
- 2) L'équation de la réaction s'écrit :

$$C_7H_6O_{3(s)} + C_4H_6O_{3(l)} \rightarrow C_9H_8O_{4(s)} + C_2H_4O_{2(l)}$$

A l'aide d'un tableau d'avancement, établir un bilan de matière.

- 3) Déterminer les masses des espèces présentes dans l'état final.
- 4) Quelle masse d'acide salicylique aurait-il fallu utiliser pour que le mélange initial soit stoechiométrique ?

Masse volumique de l'anhydre acétique : $\mu = 1,08 \text{ g.L}^{-1}$.

Correction 10:

1) Calculons les quantités des réactifs :

Pour
$$C_7H_6O_3$$
: $m = 3,3$ g; $M(C_7H_6O_3) = 7 \times 12 + 6 \times 1 + 3 \times 16 = 138$ g.mol⁻¹

$$n = m / M => n = 3,3 / 138 = 2,39.10^{-2} mol$$

Pour
$$C_4H_6O_3$$
: $V=7$ mL; $\mu=m$ / $V=>m=\mu\times V=>m=1,08\times 7=7,56$ g

$$M(C_4H_6O_3) = 4 \times 12 + 6 \times 1 + 3 \times 16 = 102 \text{ g.mol}^{-1}$$

$$n = 7,56 / 102 = 7,41.10^{-2} \text{ mol}$$

2) Tableau d'avancement de la transformation :

	$C_7H_6O_{3(s)} \ C_2H_4O_{2(l)}$	+ C ₄ H ₆ O _{3(I)}	→ C ₉ H ₈ O _{4(s)}	+
Etat initial x = 0 mol	2,39.10 ⁻²	7,41.10 ⁻²	0	0
En cours de transformation	2,39.10 ⁻² - x	7,41.10 ⁻² - x	Х	Х
Etat final $x_{max} = 2,39.10^{-3}$ mol	0	5,02.10 ⁻²	2,39.10 ⁻²	2,39.10 ⁻²

Recherche de l'avancement maximal x_{max} et du réactif limitant :

Si $C_7H_6O_3$ est le réactif limitant :2,39.10⁻² – x = 0 => x = 2,39.10⁻² mol

Si $C_4H_6O_3$ est le réactif limitant : $7,41.10^{-2} - x = 0 => x = 7,41.10^{-2}$ mol

Par conséquent $x_{max} = 2$, 39.10⁻² mol et le réactif limitant est $C_7H_6O_3$.

A l'état final il y a : $5,02.10^{-2}$ mol de $C_4H_6O_3$; $2,39.10^{-2}$ mol de $C_9H_8O_4$ et $2,39.10^{-2}$ mol de $C_2H_4O_2$.

3) Déterminons les masses : $m = n \times M$

$$m(C_4H_6O_3) = 5.02.10^{-2} \times 102 = 5.12 g$$

$$M(C_9H_8O_4) = 9 \times 12 + 8 \times 1 + 4 \times 16 = 180 \text{ g.mol}^{-1}$$

$$m(C_9H_8O_4) = 2,39.10^{-2} \times 180 = 4,30 g$$

$$M(C_2H_4O_2) = 2 \times 12 + 4 \times 1 + 2 \times 16 = 60 \text{ g.mol}^{-1}$$

$$m(C_2H_4O_2) = 2,39.10^{-2} \times 60 = 1,43 g$$

4) D'après le tableau d'avancement précédent il faut autant d'acide salicylique que d'anhydride acétique si l'on vaut que le mélange soit stoechiométrique.

Donc $n = 7,41.10^{-2} \text{ mol}$

$$m(C_9H_8O_4) = 7{,}41.10^{-2} \times 180 = \textbf{13,3 g}$$

Il faut prendre: 13,3 g d'acide salicylique.