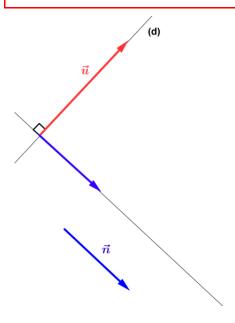
Application du produit scalaire: Géométrie analytique

I) Vecteur normal et équation de droite

1) Vecteur normal à une droite

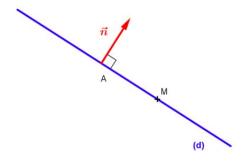
Dire que \vec{n} est un vecteur non nul normal à une droite (d) de vecteur directeur \vec{u} signifie que \vec{n} est orthogonal à \vec{u} .



Conséquence : Caractérisation d'une droite par un point donné et un vecteur normal

Dire qu'un point M appartient à la droite (d) passant par le point A et de vecteur normal \vec{n} si et seulement si \overrightarrow{AM} et \vec{n} sont orthogonaux, c'est-à-dire : si et seulement si \overrightarrow{AM} . \vec{n} = $\vec{0}$

Conséquence : Soit (d) la droite passant par un point A et de vecteur normal \vec{n} . La droite (d) est l'ensemble des points M tels que \overrightarrow{AM} . $\vec{n}=\vec{0}$



2) Vecteur normal d'une droite d'équation ax + by + c = 0

a) Propriétés :

- Une droite (d) de vecteur normal \vec{n} (a ; b) a une équation cartésienne de la forme ax + by + c = 0 où c est un nombre réel.
- La droite (d) d'équation cartésienne ax + by + c = 0 avec (a ; b) \neq (0 ; 0) a pour vecteur normal \vec{n} (a ; b)

b) Démonstration :

• (O; \vec{i} ; \vec{j}) est un repère orthonormé du plan.

 $A(x_0; y_0)$ est un point de la droite (d) de vecteur normal \vec{n} (a; b). Un point M(x; y) appartient à (d) si et seulement si $\overrightarrow{AM} \cdot \vec{n} = \vec{0}$.

$$\overrightarrow{AM}(x-x_0; y-y_0)$$
 et $\overrightarrow{n}(a; b)$

 $\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{0}$ si et seulement si $a(x - x_0) + b$ ($y - y_0) = 0$ qui est équivalent à :

$$ax + by - ax_0 - by_0 = 0$$
 qui est équivalent à :

$$ax + by + c = 0$$
 avec $c = -ax_0 - by_0$

• Dans un repère orthonormé (O ; \vec{i} ; \vec{j}) une droite (d) d'équation cartésienne : ax + by + c = 0 admet pour vecteur directeur \vec{u} (-b ; a).

Soit \vec{n} le vecteur de coordonnées (a ; b).

 $\vec{u} \cdot \vec{n} = -ba + ab = 0$. donc le vecteur \vec{n} est orthogonal au vecteur directeur de la droite (d)

Ce qui revient à dire que le vecteur \vec{n} est un vecteur normal à (d).

c) Exemples:

Dans un repère orthonormal (O ; $\vec{\iota}$; $\vec{\jmath}$) du plan on considère le cercle de centre Ω (3 ; 4) passant par les points A(4 ; 8) B(2 ; 0) et C(-1 ; 5)

Déterminer une équation cartésienne des droites suivantes :

- a) La médiatrice du segment [BC]
- b) La hauteur du triangle ABC issue de B
- c) La tangente en A au cercle $\mathscr C$

Réponse :

a) La médiatrice du segment [BC] est la droite (d_1) passant par le milieu I du segment [BC] et perpendiculaire à (BC), donc la droite (d_1) passe par le point I et a pour vecteur normal \overrightarrow{BC}

$$\overrightarrow{BC} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

Une équation cartésienne de la droite (d₁) est donc de la forme :

$$-3x + 5y + c = 0$$

I le milieu de [BC] a pour coordonnées : I $(\frac{1}{2}; \frac{5}{2})$

I appartient à la droite, ses coordonnées vérifient l'équation de (d₁) :

$$-3 \times \frac{1}{2} + 5 \times \frac{5}{2} + c = 0$$

On obtient : $c = -\frac{22}{2} = -11$

Une équation cartésienne de la médiatrice (d₁) du segment [BC] est donc :

$$-3x + 5y - 11 = 0$$

b) La hauteur issue de B est la droite (d₂) passant par le point B, perpendiculaire au côté [AC], donc la droite (d₂) passe par le point B et a pour vecteur normal \overrightarrow{AC} \overrightarrow{AC} $\begin{pmatrix} -5 \\ -3 \end{pmatrix}$

Une équation cartésienne de la droite (d_2) est donc de la forme :

$$-5x - 3y + c = 0$$

B (2 ; 0) appartient à la droite, ses coordonnées vérifient l'équation de (d_2) :

$$-5 \times 2 - 3 \times 0 + c = 0$$

On obtient : c = 10

Une équation cartésienne de la hauteur (d2) issue de B est donc :

$$-5x - 3y + 10 = 0$$

- c) La tangente (d₃) en A au cercle (\mathscr{C}) de centre Ω est la droite passant par A perpendiculaire au rayon [Ω A].
- (d₃) est donc la droite passant par le point A de vecteur normal $\overrightarrow{\Omega A}$.

$$\overrightarrow{\Omega A} \begin{pmatrix} 4-3 \\ 8-4 \end{pmatrix} \qquad \overrightarrow{\Omega A} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Une équation cartésienne de la droite (d₃) est donc de la forme :

$$x + 4y + c = 0$$

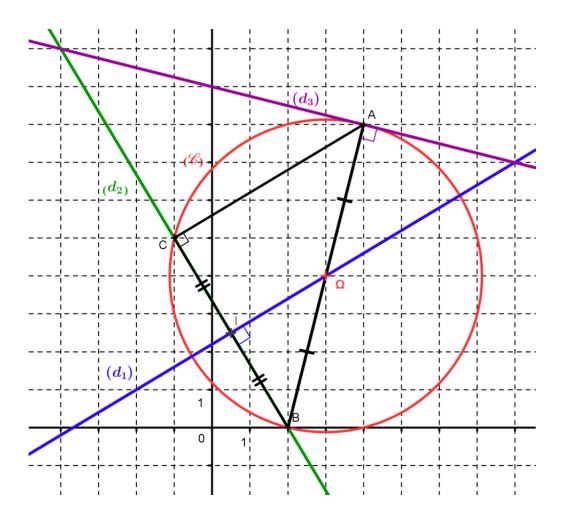
A (4; 8) appartient à la droite, ses coordonnées vérifient l'équation de (d₃) :

$$4 + 4 \times 8 + c = 0$$

On obtient : c = -36

Une équation cartésienne de la tangente (d₃) en A au cercle ($\mathscr C$) est donc :

$$x + 4y - 36 = 0$$



II) Equation cartésienne d'un cercle:

1) Cercle défini par son centre et son rayon

a) Propriétés:

 \mathscr{C} est le cercle de centre Ω (x_0, y_0) et de rayon R.

Une équation cartésienne de \mathscr{C} est : $(x - x_0)^2 + (y - y_0)^2 = \mathbb{R}^2$

b) Démonstration :

Un point M(x; y) appartient au cercle \mathscr{C} de centre Ω $(x_0; y_0)$ et de rayon R si et seulement si $\Omega M^2 = R^2$ ce qui est équivalent à :

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

c) Exemple:

Le cercle de centre Ω (3 ; 5) et de rayon 8 cm a pour équation :

$$(x-3)^2 + (y-5)^2 = 8^2$$

$$(x-3)^2 + (y-5)^2 = 64$$

2) Cercle défini par un diamètre

a) Propriété:

Le cercle $\mathscr E$ de diamètre [AB] est l'ensemble des points M tels que :

$$\overrightarrow{AM} \cdot \overrightarrow{BM} = \overrightarrow{0}$$

b) Démonstration:

Le point M appartient au cercle \mathscr{C} de diamètre [AB] si et seulement si le triangle AMB est rectangle en M, c'est-à-dire si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{BM} sont orthogonaux ce qui est équivalent à dire que \overrightarrow{AM} . $\overrightarrow{BM} = \overrightarrow{0}$

On obtient donc une équation de ce cercle en écrivant \overrightarrow{AM} . $\overrightarrow{BM} = \overrightarrow{0}$

c) Exemple:

Donner l'équation du cercle & de diamètre [AB] où A(3; -2) et B(-3; 4)

M(x ; y) appartient au cercle \mathscr{C} si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{BM} = \overrightarrow{0}$

 $\overrightarrow{AM}(x-3;y+2)$ et $\overrightarrow{BM}(x+3;y-4)$ on obtient donc:

M ϵ \mathscr{C} si et seulement si (x-3)(x+3)+(y+2)(y-4)=0

 $x^2 - 9 + y^2 - 8 - 2y = 0$ qui est équivalent à :

$$x^2 + y^2 - 2y - 17 = 0$$

L'équation du cercle \mathscr{C} est donc $x^2 + y^2 - 2y - 17 = 0$

3) Reconnaitre une équation de cercle

Exemples

Exemple 1:

Quel est le centre et le rayon du cercle d'équation :

$$x^2 + y^2 - 10x - 4y + 13 = 0$$

En utilisant des formes canoniques :

$$x^2 - 10x + y^2 - 4y + 13 = 0$$

$$x^2 - 10x + 25 - 25 + y^2 - 4y + 4 - 4 + 13 = 0$$

$$x^{2} - 10x + 25 - 25 + y^{2} - 4y + 4 - 4 + 13 = 0$$

$$(x - 5)^{2} + (y - 2)^{2} - 25 - 4 + 13 = 0$$

$$(x-5)^2 + (y-2)^2 - 16 = 0$$

$$(x-5)^2 + (y-2)^2 = 16$$

$$(x-5)^2 + (y-2)^2 = 4^2$$

Le centre du cercle \mathscr{C} est Ω (5 ; 2) et son rayon R = 4

Exemple 2:

Quel est le centre et le rayon du cercle d'équation :

$$x^2 + y^2 + 6x - 8y + 18 = 0$$

$$(x+3)^2 + (y-4)^2 = 7$$

$$(x+3)^2 + (y-4)^2 = \sqrt{7}^2$$

Le centre du cercle \mathscr{C} est Ω (-3 ; 4) et son rayon R = $\sqrt{7}$