Ex 1 : (*) - 4 pts

Dresser les tableaux de signes des fonctions suivantes sur \mathbb{R} :

$$f(x) = (x+2)(3-x)$$

х	$-\infty$	-2	•	3	•	+∞
(x+2)	_	0	+	0	+	
(3-x)	+		+	0	_	
f(x)	_	0	+	0	_	

$$g(x)=(2x-1)(3x+4)$$

х	$-\infty$	-4/3		1/2		+∞
(2 x + 1)	_		_	0	+	
(3 x - 4)	_	0	_		+	
g(x)	+	0	_	0	+	

$$h(x)=(-4x+3)(-2x-5)$$

Ī	х	$-\infty$		-5/2		3/4		+∞
	(-4 x + 3)		+		+	0	_	
ı	(-4 x + 3) (-2 x - 5)		+	0	_		_	
١	h(x)		+	0	_	0	+	

Ex 2: (*) - 3 pts

Dresser les tableaux de variations des fonctions suivantes sur \mathbb{R} :

$$f(x) = -2(x - \frac{1}{2})^2 + \frac{3}{2}$$

X	$-\infty$	1/2	+∞
f		3/2	$-\infty$

Le sommet de C_f est le point $S(\frac{1}{2}; \frac{3}{2})$

La parabole C_f est en forme de \cap car a=-2<0

$$g(x)=4(x+2)^2-9$$

X	$-\infty$	-2	+∞
g	+∞		+∞

Le sommet de C_g est le point S(-2;-9)La parabole C_g est en forme de \cup car a=4>0

$$h(x)=16-\frac{1}{2}(x-\frac{3}{4})^2$$

X	$-\infty$	3/4	+∞
h		16	

Le sommet de C_h est le point $S(\frac{3}{4};16)$

La parabole C_h est en forme de \cap car $a = \frac{-1}{2} < 0$

Ex 3: (**) - 6 pts

Soit la fonction f définie sur [-2;6] par $f(x)=(x+4)^2-(2x-1)^2$

1) Développer f(x) et montrer que $f(x)=-3x^2+15x+18$ $f(x)=(x^2+8x+16)-(4x^2-4x+1)$ $=x^2+8x+16-4x^2+8x-1$ $=-3x^2+15x+18$

2) Factoriser f(x) et montrer que f(x)=3(x+1)(6-x) $f(x)=3(6x+6-x^2-x)=3(-x^2+5x+6)=-3x^2+15x+18$

3) Résoudre l'équation f(x)=0 f(x)=0 donne 3(x+1)(6-x)=0 donc x+1=0 ou 6-x=0donc x=-1 ou x=6 donc $S=\{-1;6\}$ 4) Dresser le tableau de signes de f(x)

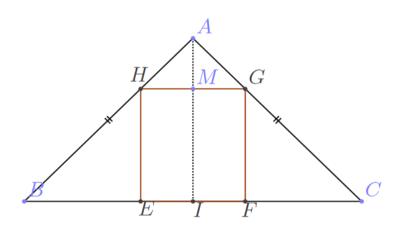
х	-2	-1			6
(x+1)	_	0	+	+	
(6-x)	+		+	+	0
f(x)	_	0	+	+	0

5) Dresser le tableau de variations de f

x	-2	2	6
f	-21	27	-21

Ex 4 : (**) - 5 pts

Dans la figure ci-contre, ABC est un triangle isocèle en A, I est le milieu de [BC], $AI = 4\,cm$, $BC = 8\,cm$ et EFGH est un rectangle; On pose $AM = x\,cm$; on note A(x) l'aire du rectangle EFGH



1) Donner l'ensemble de définition de x $D_f = [0;4]$ car $0 \le AM \le AI$

2) Montrer que
$$A(x)=-2x^2+8x$$

 $A(x)=HG\times HE=(2x)(4-x)=-2x^2+8x$

3) Montrer que $A(x)=-2(x-2)^2+8$ $A(x)=-2(x^2-4x+4)+8=-2x^2+8x-8+8=-2x^2+8x$

4) Pour quelle(s) valeur(s) at-on $A(x)=6 cm^2$? A(x)=6 donne $-2(x-2)^2+8=6$ donc $-2(x-2)^2=-2$ donc $(x-2)^2=1$ donc x-2=-1 ou x-2=1 donc x=1 ou x=3

5) Pour quelle(s) valeur(s) de x l'aire A(x) est-elle maximale? A(x) est maximale si x=2 et $A_{max}=8 cm^2$ (cf tab de variations)

Ex 4 : (***) - 2 pts

On considère la fonction f définie sur \mathbb{R} par $f(x)=a(x+b)^2+c$ Déterminer les valeurs de a,b,c sachant que la parabole représentative de f admet pour sommet le point S(7;5) et passe par le point A(6;2).

on sait que $f(x)=a(x+b)^2+c$ et f admet pour sommet le point S(7;5) donc b=-7 et c=5 donc $f(x)=a(x-7)^2+5$ de plus C_f passe par le point A(6;2) donc f(6)=2 donc $a(6-7)^2+5=2$ donc a+5=2 donc a=-3

ainsi on déduit que : $f(x)=-3(x-7)^2+5$