Fonctions du 2nd degré

La fonction P définie par $P(x) = ax^2 + bx + c$ est un trinôme du second degré ($a \ne 0$), et $\Delta = b^2 - 4ac$ est son discriminant.

Sa forme canonique est $P(x) = a(x - \alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a}$.

La courbe représentative de la fonction P est une parabole.

	Si Δ> 0		Si Δ= 0		S	Si Δ< 0	
Allure de la courbe	Si a > 0 Si a <	1	Si a > 0	Si a < 0	Si a > 0	Si a < 0	
sommet	Le sommet S de la parabole a pour coordonnées (α ; β) soit ($-\frac{b}{2a}$; $-\frac{\Delta}{4a}$)						
Variation de la fonction	Si $a > 0$, la fonction est décroissante sur $]-\infty$; $-\frac{b}{2a}]$ et croissante sur $[-\frac{b}{2a}; +\infty[$. Si $a < 0$, la fonction est croissante sur $]-\infty$; $-\frac{b}{2a}]$ et décroissante sur $[-\frac{b}{2a}; +\infty[$.						
Racines	$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ deux racines distinctes : $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$		une racine : $x_0 = -\frac{b}{2a}$		pas de racine		
Factorisation	$P(x) = a(x - x_1)(x - x_2)$		$P(x) = a(x - x_0)^2$		Pas de factorisation		
Tableau de signes	$ \begin{array}{ c c c c c }\hline x & -\infty & x_1\\ \hline \text{signe} & \text{signe de } a & \text{opposé du signe de } a\\ P(x) & \text{signe de } a & \\ \hline \end{array} $		$ \begin{array}{ c c c } \hline x & -\infty & x_0 \\ \hline \text{signe } & \\ \text{de } & \text{signe de } a \\ \hline P(x) & \\ \hline \end{array} $	$+\infty$ signe de a	$\begin{array}{c c} x & -\infty \\ \hline \text{signe de} \\ P(x) \\ \hline \end{array}$	$+\infty$ igne de a	