Équation du 1er degré

On isole l'inconnue dans une équation du 1^{er} degré, en développant ou en multipliant par de dénominateur commun si nécessaire. On obtient alors :

$$ax = b$$

- Si $a \neq 0$, une solution $x = \frac{b}{a}$ d'où $S = \left\{\frac{b}{a}\right\}$
- Si a = 0 et $b \neq 0$, impossible d'où $S = \emptyset$.
- Si a=0 et b=0, toujours vrai d'où $S=\mathbb{R}$

Factorisation

On peut factoriser de deux façons :

- Par un facteur commun : ab + ac = a(b + c)
- Par une identité remarquable :
 - Par une différence de deux carrés :

$$a^2 - b^2 = (a - b)(a + b)$$

- par un carré parfait :

$$a^2 \pm 2ab + b^2 = (a \pm b)^2$$

Équations et

inéquations du premier

degré

Inéquation du 1er degré

On isole l'inconnue dans une inéquation du 1^{er} degré. On obtient alors :

$$ax \le b$$
 ou $ax < b$ ou $ax > b$ ou $ax \ge b$

• Si $a \neq 0$, on divise par a a > 0, on ne change pas l'inégalité a < 0, \bigwedge on inverse l'inégalité

On obtient une section commençante ou finissante.

• Si a = 0, on obtient $S = \emptyset$ ou $S = \mathbb{R}$

Équation produit

Lorsque l'équation est de degré supérieur à 1, on annule le second membre.

Si le premier membre peut se factoriser en facteurs du 1^{er} degré, on applique l'intégrité de la multiplication :

$$ab = 0 \Leftrightarrow a = 0 \text{ ou } b = 0$$

En cas d'égalité de deux carrés, on applique la règle

$$a^2 = b^2 \Leftrightarrow a = b \text{ ou } a = -b$$

Inéquation produit

Lorsque l'inéquation est de degré supérieur à 1, on annule le second membre.

- On factorise le premier membre
- On détermine les valeurs frontières.
- On remplit un tableau de signes puis on résout l'inéquation à l'aide du tableau.

Équation quotient

Si l'inconnue apparaît au dénominateur :

- On détermine l'ensemble de définition D_f .
- En cas d'égalité de deux fractions on effectue un produit en croix.
- Sinon, on multiplie par le dénominateur commun.
- On résout l'équation en vérifiant que la ou les solutions appartiennent à l'ensemble de définition.

Signe du binôme ax + b

Lorsque l'on cherche le signe de ax + b:

- On détermine la valeur frontière : $x = -\frac{b}{a}$
- On obtient alors le tableau de signe suivant :

x	-∞ -	$-\frac{b}{a}$		$+\infty$
ax + b	signe de – a	0	signe de <i>a</i>	
<i>a</i> > 0	_	0	+	
a < 0	+	0	_	

Inéquation quotient

Lorsque l'inconnue apparaît au dénominateur :

- On détermine l'ensemble de définition D_f .
- On annule le second membre.
 A Pas de produit en croix!!
- On réduit au même dénominateur le premier membre en factorisant si nécessaire.
- On détermine les valeurs frontières.
- On remplit un tableau de signes en mettant une double barre pour la ou les valeurs interdites puis on résout l'inéquation à l'aide du tableau.

Exemples de résolution d'équations

• Premier degré

$$\frac{x+2}{3} - \frac{3(x-2)}{4} = \frac{-7x+2}{12} + 2$$
(×12)
$$4(x+2) - 9(x-2) = -7x+2+24$$

$$4x+8-9x+18 = -7x+2+24$$

$$2x = 0 \Leftrightarrow x = 0.$$
 soit $S = \{0\}$

• Équation produit

$$(x-1)(2x+3) = (x-1)(x-6)$$

$$(x-1)(2x+3) - (x-1)(x-6) = 0$$

$$(x-1)(2x+3-x+6) = 0$$

$$(x-1)(x+9) = 0$$
soit $S = \{-9; 1\}$

• Égalité de deux carrés

$$(5x+2)^2 = (x+1)^2$$

 $5x+2 = x+1$ ou $5x+2 = -x-1$ soit $S = \left\{-\frac{1}{2}; -\frac{1}{4}\right\}$

• Équation quotient

$$\frac{x+1}{x+5} = \frac{x-2}{x+3}$$
 $D_f = \mathbb{R} - \{-5; -3\}$

 $x \in D_f$ produit en croix

$$(x-3)(2x-5) = (x-2)(2x-4)$$

$$2x^2 - 5x - 6x + 15 = 2x^2 - 4x - 4x + 8$$

$$-5x - 6x + 4x + 4x = -15 + 8$$

$$-3x = -7 \iff x = \frac{7}{3} \in D_f \quad \text{soit} \quad S = \left\{\frac{7}{3}\right\}$$

$$\frac{-4}{x-4} + \frac{1}{x} = \frac{-3}{x-3} \qquad D_f = \mathbb{R}^* - \{3;4\}$$

$$x \in D_f \quad \text{ on multiplie par } x(x-4)(x-3)$$

$$-4x(x-3) + (x-4)(x-3) = -3x(x-4)$$

$$-4x^2 + 12x + x^2 - 3x - 4x + 12 = -3x^2 + 12x$$

$$-4x^2 + x^2 + 3x^2 - 3x - 4x = -12$$

$$-7x = -12 \quad \Leftrightarrow \quad x = \frac{12}{7} \in D_f \qquad \text{ soit } \quad S = \left\{\frac{12}{7}\right\}$$

Exemples de résolution d'inéquations

• Premier degré

$$2(x-1) - 3(x+1) > 4(3x+2)$$

 $2x - 2 - 3x - 3 > 12x + 8$
 $-13x > 13 \Leftrightarrow x < -1 \text{ soit } S =]-\infty; -1[$

• Inéquation produit

$$(x-5)(x-2) < (x-5)(2x-3)$$

 $x-5)(x-2) - (x-5)(2x-3) < 0$
 $(x-5)(x-2-2x+3) < 0$
 $(x-5)(-x+1) < 0$ $S =]-\infty; 1 [\cup] 5; +\infty [$

x	$-\infty$		1		5		+∞
x-5		_		_	ø	+	
-x + 1		+	ф	_		_	
(x-5)(-x+1)		_	Ф	+	0	_	

• Inéquation quotient

$$\frac{4}{x+1} \leqslant 3 \qquad D_f = \mathbb{R} - \{-1\}$$

$$\frac{4}{x+1} - 3 \leqslant 0 \quad \Leftrightarrow \quad \frac{-3x+1}{x+1} \leqslant 0 \qquad S = \left] - \infty; -1 \right[\cup \left[\frac{1}{3}; +\infty \right]$$

x	$-\infty$		-1		$\frac{1}{3}$		+∞
-3x + 1		+		+	ø	_	
x + 1		_	ø	+		+	
$\frac{-3x+1}{x+1}$		_		+	0	_	