On donne A(2; -1; 3), B(1; 2; 0), C(-2; 1; 2) et D(-1; -2; 5).

- 1) ABCD est-il un parallélogramme? Un rectangle?
- 2) Calculer les coordonnées de l'isobarycentre du quadrilatère ABCD.

### **Exercice 2**

On donne 
$$A(-3; 1; 4)$$
,  $B(-2; -1; 7)$ ,  $C(-4; -1; -2)$  et  $D(-5; -5; 4)$ .

Les droites (AB) et (CD) sont-elles parallèles?

# **Exercice 3**

On donne 
$$A(1; 1; 3)$$
,  $B(\sqrt{2}+1; 0; 2)$  et  $C(\sqrt{2}+1; 2; 2)$ .

Quelle est la nature du triangle *ABC*?

### Exercice 4

On donne 
$$A(1; -2; 3)$$
,  $B(0; 4; 4)$  et  $C(4; -20; 9)$ .

Les points A, B et C sont-ils alignés?

#### Exercice 5

ABCD est un tétraèdre régulier d'arête a. On note G son centre de gravité.

1) Démontrer que :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AD} = \overrightarrow{AD} \cdot \overrightarrow{AB} = \frac{a^2}{2}$$

et qu'il en est de même pour les autres sommets.

- 2) Démontrer que deux arêtes opposées sont orthogonales.
- 3) Soit A' le centre de gravité du triangle BCD. Exprimer  $\overrightarrow{AG}$  en fonction de  $\overrightarrow{AA'}$ .

#### Exercice 6

ABCDEFGH est un cube de côté égal à 1. On considère le repère  $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ .

- 1) Calculer la longueur CE.
- 2) Calculer les coordonnées du centre de gravité I de AHF et du centre de gravité J de BDG.
- 3) Démontrer que la droite (IJ) est orthogonale au plan (AHF) ainsi qu'au plan (BDG). Rappel : pour montrer qu'une droite (d) est orthogonale à un plan P, on montre qu'elle est orthogonale à deux droites sécantes de ce plan.
- 4) Démontrer que  $\overrightarrow{IJ} = \frac{1}{3}\overrightarrow{EC}$ .

ABCD est un tétraèdre. On note I et J les milieux respectifs de [AC] et [BD]. On définit les points  $P,\,Q,\,R$  et S par :

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$$
;  $\overrightarrow{AQ} = \frac{1}{3}\overrightarrow{AD}$ ;

$$\overrightarrow{CR} = \frac{1}{3}\overrightarrow{CB}$$
;  $\overrightarrow{CS} = \frac{1}{3}\overrightarrow{CD}$ .

Le but de ce problème est de démontrer que les droites (PS), (QR) et (IJ) sont concourantes.

- 1) Faire une figure.
- 2) Démontrer que :
  - a) P est le barycentre de (A; 2) et (B; 1);
  - **b)** Q est le barycentre de (A; 2) et (D; 1);
  - c) R est le barycentre de (C; 2) et (B; 1);
  - **d)** S est le barycentre de (C; 2) et (D; 1).
- 3) On considère le point G barycentre de (A; 2), (B; 1), (C; 2) et (D; 1). En utilisant la règle d'associativité, démontrer que G est sur (PS), mais aussi sur (QR) et sur (IJ).
- 4) Conclure.

Question subsidiaire : que pensez-vous du quadrilatère PQRS? Justifier votre réponse.

# **Exercice 8**

ABCDEFGH est un cube de côté égal à 1. On considère le repère  $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ . I est le centre du carré EFGH et J le centre du carré BCGF.

- 1) Faire une figure.
- 2) Préciser les coordonnées de I et J.
- 3) Calculer les distances AI, AJ et IJ.
- 4) Calculer le produit scalaire  $\overrightarrow{AI} \cdot \overrightarrow{AJ}$  et en déduire une mesure de l'angle  $(\overrightarrow{AI}, \overrightarrow{AJ})$ .

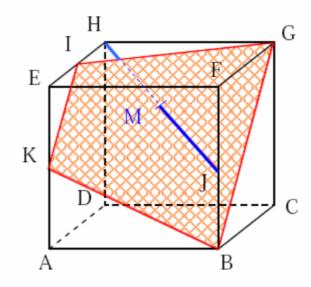
#### Exercice 9

L'espace est rapporté à un repère orthonormal direct  $(O\ ; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ .

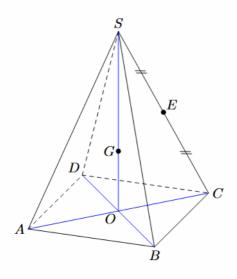
On considère les points :

$$A(1; 0; -1)$$
  $B(-1; 0; 0)$   $C(1; -6; 4)$   $D(4; -9; 5)$   $E(3; -6; 3)$ 

- 1) Montrer que les points A, B, C et D sont coplanaires.
- 2) Montrer que le point D appartient à la droite (AE).
- 3) Montrer que ABCE est un parallélogramme. Est-ce un rectangle ? Est-ce un carré ?


ABCDEFGH est un cube et I et J sont les milieux des segments [HE] et [FB]. On se propose de démontrer par deux méthodes que la droite (HJ) coupe le plan (BGI) en M milieu de [HJ].

# Méthode analytique

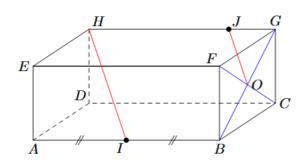

- 1) Déterminer les coordonnées des points B, G, I, H, J et M milieu de [HJ] dans le repère  $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ .
- 2) Démontrer que la droite (HJ) coupe le plan (BGI) en M.

# Méthode géométrique

- 1) Démontrer que le plan (BGI) coupe le cube suivant un polygone BGIK où K est le milieu de [AE].
- 2) Quelle est la nature du quadrilatère KJGH?
- 3) Conclure.



# Exercice 11

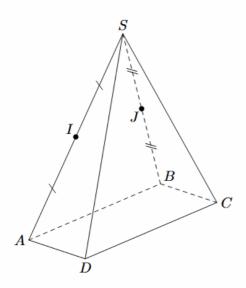



SABCD est une pyramide à base carrée ABCD de centre O.

G est le centre de gravité du triangle SBD et E est le milieu du segment [SC].

Démontrer que les points A, G et E sont alignés.

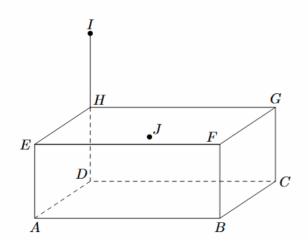
# Exercice 12




ABCDEFGH est un pavé droit.

On note I le milieu de l'arête [AB] et J le point tel que  $\overrightarrow{HJ}=\frac{3}{4}\overrightarrow{AB}$ .

O est le centre de la face BCGF.

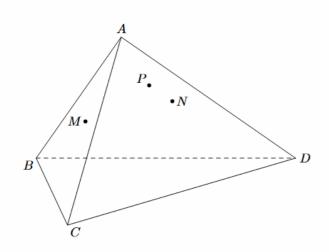

Démontrer que les droites (IH) et (JO) sont parallèles.



La pyramide SABCD est à base rectangulaire. On appelle I le milieu de [SA] et J le milieu de [SB].

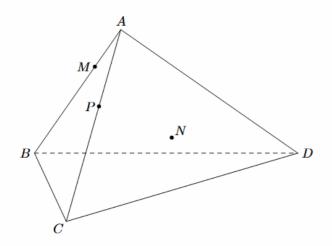
Déterminer l'intersection des plans (DIJ) et (SAC).

# Exercice 14




Soit un pavé ABCDEFGH.

On prend un point I distinct de H sur la droite (HD) et un point J sur la face EFGH n'appartenant pas à [GH].

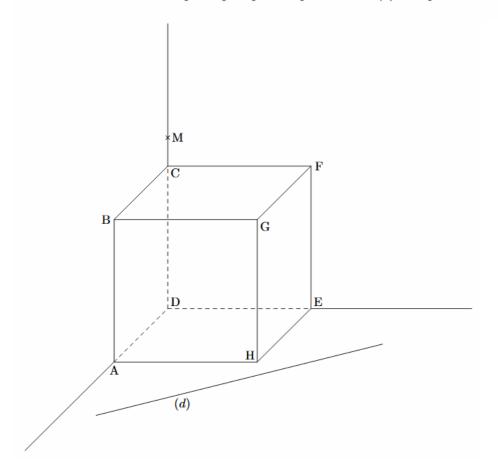

Déterminer la section du pavé par le plan (IHJ).

# Exercice 15



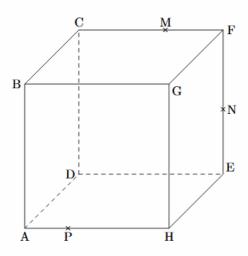
Déterminer la section du tétraèdre ABCD par le plan (MNP), sachant que :

- -M est un point du plan (ABC),
- -N est un point du plan (ACD),
- -P est un point du plan (ABD).

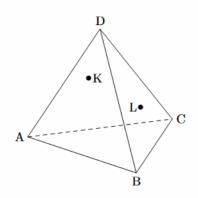



Déterminer la section du tétraèdre ABCD par le plan (MNP), sachant que :

- M est un point du segment [AB],
- -P est un point du segment [AC],
- -N est un point du plan (ACD).


# Exercice 17

ABCDEFGH est un cube. La droite (d) fait partie du plan (ADE). M est un point de la droite (DC). Dessiner la section du cube par le plan passant par la droite (d) et le point M.

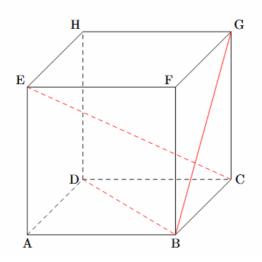



ABCDEFGH est un cube. M est un point du segment [CF]. N est un point du segment [EF]. P est un point du segment [AH].

Dessiner la section du cube par le plan (MNP).

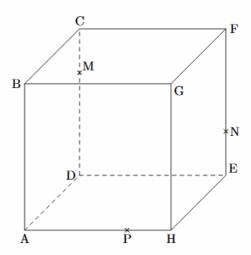


# Exercice 19




On considère un tétraèdre ABCD. K est un point du plan (ABD). L est un point du plan (DBC). On suppose (IJ) et (KL) non parallèles. Quel est le point d'intersection du plan (ABC) avec la droite (KL)?

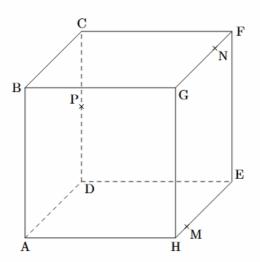
# Exercice 20


ABCDEFGH est un cube.

- 1) Les droites (EC) et (BD) sont-elles orthogonales?
- 2) Les droites (EC) et (BG) sont-elles orthogonales?



ABCDEFGH est un cube. M est un point du segment [CD]. N est un point du segment [EF]. P est un point du segment [AH].


Dessiner la section du cube par le plan (MNP).



### **Exercice 22**

ABCDEFGH est un cube. M est un point du segment [HE]. N est un point du segment [GF]. P est un point du segment [CD].

Dessiner la section du cube par le plan (MNP).

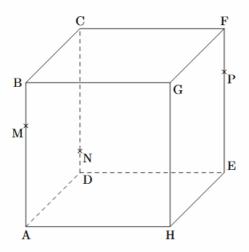


### Exercice 23

Les points A(3; 1; -2), B(2; 3; 2), C(4; -2; 0) et D(3; 0, 4) sont-ils coplanaires?

### **Exercice 24**

- 1) Démontrer que l'ensemble des points M de l'espace dont les coordonnées vérifient l'équation  $x^2 + y^2 + z^2 2x + 4y 4 = 0$  est une sphère dont on donnera les éléments caractéristiques.
- 2) Le point  $H(1+\sqrt{2}; 0; \sqrt{3})$  est-il sur cette sphère?


#### **Exercice 25**

On donne E(5; 2; 3) et F(1; 2; 1).

Déterminer les coordonnées du point G intersection de la droite (EF) avec le plan (yOz).

ABCDEFGH est un cube. M est un point du segment [AB]. N est un point du segment [CD]. P est un point du segment [EF].

Dessiner la section du cube par le plan (MNP).



# Exercice 27

Les points A(5; 2; 2), B(6; 7; 4), C(2; 5; 3) et D(0; -5; -1) sont-ils coplanaires?

### Exercice 28

- 1) Démontrer que l'ensemble des points M de l'espace dont les coordonnées vérifient l'équation  $x^2 + y^2 + z^2 + 6y 2z = 0$  est une sphère dont on donnera les éléments caractéristiques.
- 2) Le point  $H(2\sqrt{2}; -3; 1+\sqrt{2})$  est-il sur cette sphère?

## Exercice 29

On donne E(3; 1; 4) et F(5; 6; 2).

Déterminer les coordonnées du point G intersection de la droite (EF) avec le plan (xOz).