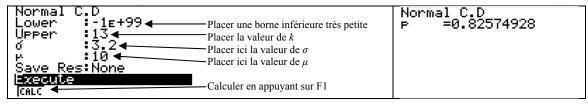

Loi Normale et calculatrice

La variable aléatoire X suit la loi normale $\mathcal{N}(\mu; \sigma)$

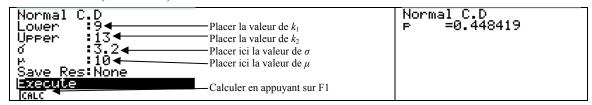
Nous choisissons ici une variable aléatoire X qui suit la loi normale $\mathcal{N}(10;3,2)$

Casio : Graph 35+ et modèles supérieurs

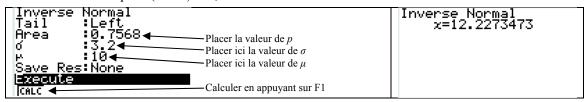


Remarque

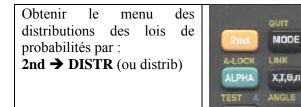
Npd permet d'obtenir les valeurs prises par la fonction de densité.


Calcul de $P(X \le k)$: choisir Ncd

Pour calculer $P(X \le 13)$


Calcul de $P(k_1 \le X \le k_2)$: choisir Ncd

Pour calculer $P(9 \le X \le 13)$



Calcul de a tel que $P(X \le a) = p$ (avec $0 \le p \le 1$): choisir InvN

Pour calculer a tel que $P(X \le a) = 0.7568$

Texas : TI82 Stats Fr et modèles supérieurs

Remarque

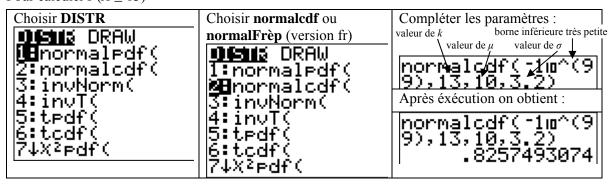
Normalpdf ou normalFdp (version fr) permet d'obtenir les valeurs prises par la fonction de densité.

MATRX

MATH

DEL

STAT

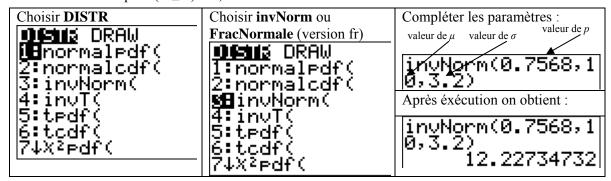

PRGM

VARS

CLEAR

Calcul de $P(X \le k)$

Pour calculer $P(X \le 13)$


Calcul de $P(k_1 \le X \le k_2)$

Pour calculer $P(9 \le X \le 13)$

Calcul de a tel que $P(X \le a) = p$ (avec $0 \le p \le 1$)

Pour calculer a tel que $P(X \le a) = 0.7568$

