Ex 10:

Situation n°1 : On lance un dé cubique : toutes les faces sont numérotées "6" --> Loi C

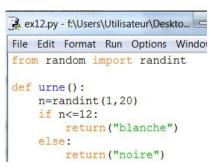
Situation n° 2 : On lance un dé cubique ; le dé est "normal" --> loi **A**

Situation n° 3 : On lance un dé cubique; La probabilité est proportionnelle au n° --> Loi **B**

Issue	1	2	3	4	5	6
Fréquence	<u>1</u>	<u>1</u>	<u>1</u>	1/6	<u>1</u>	1 6
Loi B						
Issue	1	2	3	4	5	6
Fréquence	1/21	2 21	1 7	4 21	<u>5</u> 21	<u>2</u>
Loi 🤇						
Issue	1	2	3	4	5	6
Fréquence	0	0	0	0	0	1

Ex 11:

On déduit facilement la loi de probabilité suivante :


Issue	Noire	Blanche	Rouge	Autre	TOTAL
Probabilité	0,205	0,365	0,14	0,29	1

Ex 12:

On considère les événements B: "la boule est blanche" et N: "la boule est noire"

alors
$$P(B) = \frac{12}{20} = 0.6$$
 et $P(N) = \frac{8}{20} = 0.4$

On complète ple script PYTHON comme cicontre

Ex 13:

On considère une Urne contenant 15 "Pile" et 5 "Face"

donc la probabilité d'obtenir "Pile" est $p = \frac{15}{20} = 0.75$ et la probabilité d'obtenir

"Face" est $q = \frac{5}{20} = 0.25$ on vérifie que la loi est valide car p+q=1

Ex 17:

On considère l'Univers suivant : $\Omega = \{1:2:2:3:3:3:4:4:4:4\}$ soit A: "le n° est impair" et B: "le n° est supérieur ou égal à 3" alors $P(A) = \frac{4}{10} = 0.4$ et $P(B) = \frac{7}{10} = 0.7$

Ex 14:

On obtient facilement les associations suivantes :

$$a \rightarrow P_3 = 0.5$$
; $b \rightarrow P_5 = 1$; $c \rightarrow P_4 = 0.4$; $d \rightarrow P_1 = 0.75$; $e \rightarrow P_2 = 0$

Ex 16:

ainsi la roue contient :

- 1 secteur "1"
- 2 secteurs "2"
- 4 secteurs "3"
- 1 secteur "4"

soit les événements :

- A: "le secteur est pair"
- B: "le secteur est ≤ 3 "

ainsi :
$$P(A) = \frac{3}{8} = 0.375$$

et $P(B) = \frac{7}{8} = 0.875$

Ex 18:

soit l'événement O: "la piste est ouverte" donc \overline{O} : "la piste est fermée" soit l'événement V: "la piste est verglacée"

alors $O \cup V$: "la piste est ouverte ou verglacée" et $\overline{O} \cap \overline{V}$: "la piste est fermée et non verglacée"

Ex 19:

 $P(F \cap K) = 0$:

on obtient facilement les probabilités suivantes

 $P(H) = \frac{6}{9} = \frac{2}{3}$; $P(F \cap G) = \frac{2}{9}$;

 $P(F \cup H) = \frac{7}{9}$; $P(H \cup K) = \frac{6}{9} = \frac{2}{3}$

