Ex 21:

- 1) Si P(A) = 0.52 alors $P(\overline{A}) = 1 P(A) = 0.48$ donc **FAUX**
- 2) Si P(A)=0.2 ; P(B)=0.5 et $P(A\cap B)=0.1$ alors $P(A\cup B)=0.2+0.5-0.1=0.6$ donc **FAUX**
- 3) Si $P(A) = \frac{1}{3}$; $P(B) = \frac{1}{7}$ et $P(A \cup B) = \frac{13}{21}$ alors $P(A \cap B) = \frac{1}{3} + \frac{1}{7} \frac{13}{21} = \frac{-1}{7}$: impossible! Donc **FAUX**
- 4) Si $P(\overline{A})=0.4$; $P(\overline{B})=0.2$ et $P(A \cup B)=0.8$ alors $P(A \cap B)=0.6+0.8=0.6$ donc **FAUX**

Ex 23:

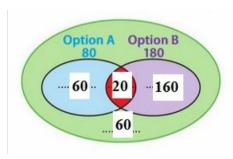
On complète le diagramme de VENN comme suit :

$$Card(A \cap \overline{B}) = 60$$

$$Card(A \cap B) = 20$$

$$Card(B \cap \overline{A}) = 160$$

$$Card(\overline{A} \cap \overline{B}) = 60$$



on déduit les probabilités suivantes :

$$P(A) = \frac{80}{300} = \frac{4}{15} \quad ; \quad P(B) = \frac{180}{300} = 0.6 \quad ; \quad P(A \cap B) = \frac{20}{300} = \frac{1}{15} \quad ;$$

$$P(A \cup B) = \frac{60 + 20 + 160}{300} = 0.8 \quad \text{de plus} \quad P(A) + P(B) = \frac{4}{15} + 0.6 = \frac{13}{15}$$

$$\text{donc} \quad P(A) + P(B) \neq P(A \cup B) \quad \text{mais} \quad P(A) + P(B) = P(A \cup B) + P(A \cap B)$$

Ex 24:

Soient les événements :

A: " le guichet A est ouvert" et

B : "le guichet B est ouvert" on obtient le tableau croisé cicontre

ainsi
$$P(A \cup B) = \frac{a}{100}$$

cette valeur dépend des données (manquantes) de l'énoncé!

	A	\overline{A}	TOTAL
В	а	54-a	54
\overline{B}	73-a	a-27	46
TOTAL	73	27	100

Ex 25:

On obtient le tableau ci-dessous :

	Acceptée	Refusée	TOTAL
Valable	93 100	1900	95 000
Non valable	4 000	1000	5 000
TOTAL	97100	2 900	100000

On considère les événements suivants :

• A: "la pièce est acceptée"; R: "la pièce est refusée"

• V: "la pièce est valable"; N: "la pièce est non valable"

on déduit :
$$P(A)=0.971$$
 ; $P(R)=0.029$; $P(V)=0.95$; $P(N)=0.05$

- \triangleright le risque de l'acheteur est $P(A \cap N) = 0.04 = 4\%$
- \triangleright le risque du vendeur est $P(V \cap R) = 0.019 = 1.9\%$

Ex 26:

on donne le tableau ci-contre :

$$P(S) = \frac{40}{100} = 0.4$$
 $P(\overline{T}) = \frac{25}{100} = 0.25$

$$P(S \cap T) = \frac{30}{100} = 0.3$$

$$P(S \cup T) = \frac{10 + 30 + 45}{100} = \frac{85}{100} = 0.85$$

	S	S	Total
T	30	45	75
Ŧ	10	15	25
Total	40	60	100

Ex 27:

on obtient le tableau ci-contre :

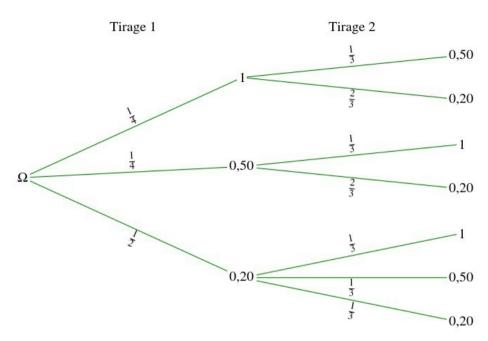
$$P(D) = \frac{45}{50} = 0.9$$
$$P(F) = \frac{20}{50} = 0.4$$

$$P(F \cap D) = \frac{17}{50} = 0.34$$

	G	D	TOTAL
F	3	17	20
Н	2	28	30
TOTAL	5	45	50

Ex 29:

On obtient l'arbre de probabilité ci-dessous :



On déduit les probabilités suivantes :

$$P(A) = P((0,20 \epsilon) \cap (0,20 \epsilon)) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

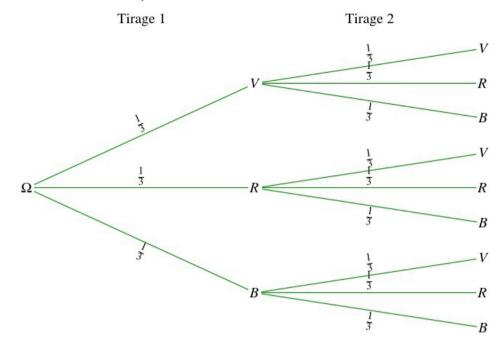
$$P(B)=P(\overline{A})=1-P(A)=\frac{5}{6}$$

$$P(C) = P((0,50\,\epsilon) \cap (0,20\,\epsilon)) + P((0,20\,\epsilon) \cap (0,50\,\epsilon)) = \frac{1}{4} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{3}$$

$$\begin{split} P(D) &= P((1\,\epsilon\,) \cap (0,50\,\epsilon\,)) + P((1\,\epsilon\,) \cap (0,20\,\epsilon\,)) + \dots \\ &\quad \dots + P((0,50\,\epsilon\,) \cap (1\,\epsilon\,)) + P((0,20\,\epsilon\,) \cap (1\,\epsilon\,)) \\ &= \frac{1}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{2} \end{split}$$

Ex 31:

On obtient l'arbre de probabilité ci-dessous :



on déduit les probabilités suivantes :

$$P(E_1) = P(V \cap R) + P(V \cap B) + P(R \cap V) + P(B \cap V)$$

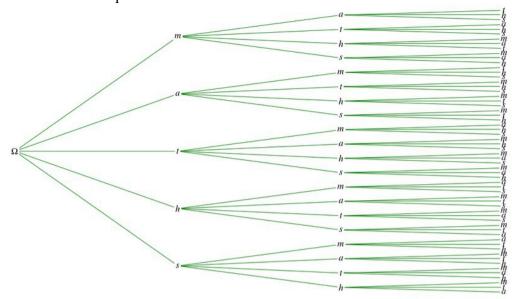
= $\frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{4}{9}$

$$\begin{split} P(E_2) &= P(V \cap V) + P(V \cap R) + P(V \cap B) + P(R \cap V) + P(B \cap V) \\ &= \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{5}{9} \end{split}$$

$$P(E_3) = P(V \cap V) + P(V \cap B) + P(B \cap V) + P(B \cap B)$$

= $\frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{4}{9}$

Ex 32 : on obtient l'arbre pondéré ci-dessous :



La probabilité d'obtenir le mot "ATS" est : $p_1 = \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} = \frac{1}{60}$

La probabilité d'obtenir le mot "MAT" est : $p_2 = \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} = \frac{1}{60}$

La probabilité d'obtenir un anagramme du mot "SAM" est :

$$p_3 = 3 \times 2 \times 1 \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} = \frac{6}{60} = \frac{1}{10}$$

en effet il y a 6 anagrammes du mot "SAM" : "SAM" ; "SMA" ; "ASM" ; "AMS" ; "MAS" ; "MSA"

Ex 35:

On note les événements suivants :

A: "le client achète l'article A" et B: "le client achète l'article B"

d'après l'énoncé P(A)=0.36 ; P(B)=0.23 ; $P(A\cap B)=0.15$ donc $P(A\cup B)=P(A)+P(B)-P(A\cap B)=0.36+0.23-0.15=0.44$

ainsi $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.44 = 0.56$ donc la probabilité qu'un client n'achète aucun des 2 articles est de 56%

Ex 36 : On obtient le tableau croisé traduisant l'expérience :

	2	4	8	16	32	64
2	4	6	10	18	34	66
4	6	8	12	24	36	68
8	10	12	16	24	40	72
16	18	20	24	32	48	80
32	34	36	40	48	64	96
64	66	68	72	80	96	128

La probabilité d'obtenir un "multiple de 16" est de $p = \frac{9}{36} = 0.25$

Ex 37:

On donne le programme PYTHON cicontre ainsi la probabilité d'obtenir une boule blanche est P(B)=0,575 et la probabilité d'obtenir une boule noire est P(N)=0,425

or il y a 17 boules noires le nombre b de boules blanches vérifie l'équation :

$$\frac{b}{b+17}$$
=0,575 donc 0,575(b+17)=b

donc $0,425b=0,575\times17$ donc $b=\frac{9,775}{0.425}=23$ et 40 boules au total

Ex 38:

1) Il y a 2 times 2 times 2=2³=8 issues possibles

2)
$$P(A) = P(fff) = \frac{1}{8}$$
; $P(B) = P(pff) + P(fpf) + P(ffp) = \frac{3}{8}$; $P(C) = 1 - P(ppp) = 1 - \frac{1}{8} = \frac{7}{8}$

3) \overline{A} : "Léa obtient au moins un Pile" $P(\overline{A}) = 1 - P(A) = 1 - \frac{1}{8} = \frac{7}{8}$

Ex 40:

- 1) P(E)=0.15+0.2+0.4=0.75 ---> réponse **b**
- 2) $P(E \cap F) = 0.15 + 0.2 = 0.35$ ---> réponse **c**
- 3) $P(E \cup F) = 0.15 + 0.1 + 0.2 + 0.4 = 0.85$ ---> réponse **a**
- 4) P(F)=0.15+0.1+0.2=0.45 ---> réponse **d**

Ex 41:

On obtient le tableau croisé de la situation :

	Blanches	Rouges	Jaunes	TOTAL
Jacinthes	45	50	30	125
Tulipes	105	200	70	375
TOTAL	150	250	100	500

Calcul des probabilités simples :
$$P(J) = \frac{125}{500} = 0.25$$
 ; $P(B) = \frac{150}{500} = 0.3$;

$$P(T) = \frac{375}{500} = 0.75$$
; $P(R) = \frac{250}{500} = 0.5$

 $\overline{J \cup B}$: "Obtenir une Tulipe Rouge ou Jaune"

 $\overline{J \cap B}$: "Obtenir une fleur une Tulipe ou une fleur Rouge ou Jaune"

 $\overline{J} \cap \overline{B}$: "Obtenir une Tulipe Rouge ou Jaune"

 $\overline{J} \cup \overline{B}$: "Obtenir une fleur une Tulipe ou une fleur Rouge ou Jaune"

on observe alors que : $\overline{J \cup B} = \overline{J} \cap \overline{B}$ et $\overline{J \cap B} = \overline{J} \cup \overline{B}$

(Ces relations sont connues sous le nom de "Lois de MORGAN")

Ex 42:

On obtient le tableau croisé des données :

	Natation	Pas de Natation	TOTAl
Volley-Ball	4	3	7
Pas de Volley-Ball	8	13	21
TOTAL	12	16	28

d'après l'énoncé
$$Card(\Omega)=28$$
 ; $Card(N)=12$; $Card(V)=7$ et $Card(\overline{N}\cap \overline{V})=13$ donc $Card(\overline{N}\cup \overline{V})=13$

donc
$$Card(N \cup V) = Card(\Omega) - 13 = 28 - 13 = 15$$

or
$$Card(N \cup V) = Card(N) + Card(V) - Card(N \cap V)$$

done $Card(N \cap V) = Card(N) + Card(V) - Card(N \cup V) = 12 + 7 - 15 = 4$

ainsi la probabilité qu'il pratique "au moins un des deux sports" est :

$$P(N \cup V) = \frac{15}{28} \approx 0,535$$

et la probabilité qu'il pratique "les deux sports" est :

$$P(N \cap V) = \frac{4}{28} \approx 0,142$$