1. Fonction racine carrée

1. Définition

Définition et propriété

- La racine carrée d'un nombre réel positif a est l'unique réel positif dont le carré vaut a. La racine carrée de a se note \sqrt{a} . On a $\sqrt{a} \ge 0$.
- La fonction racine carrée est la fonction définie sur [0; $+\infty$ [par $f(x) = \sqrt{x}$.

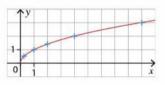
Remarque: f(1) = 1 et f(4) = 2.

f(4) n'est pas le quadruple de f(1), la fonction racine carrée n'est donc pas linéaire.

2. Représentation graphique

Pour tracer la courbe représentative de la fonction racine carrée, on établit le tableau de valeurs ci-dessous pour des points d'abscisse positive ou nulle.

x	0	0,25	1	2	4	9
f(x)	0	0,5	1	≈ 1,41	2	3



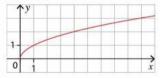
Remarque : La courbe de la fonction racine carrée est une demi-parabole.

3. Variation de la fonction racine carrée

Propriété

Quand les valeurs de x augmentent, les valeurs de f(x) augmentent également. La fonction racine carrée est croissante sur $[0; +\infty[$.

On peut résumer les variations dans un tableau de variation.



4. Propriétés algébriques de la racine carrée

Propriétés

- Soit x un réel. On a $\sqrt{x^2} = |x|$.
- Soient a et b deux réels positifs. On a $\sqrt{ab} = \sqrt{a}\sqrt{b}$ et, si $b \neq 0$, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Remarque: $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

2. Fonction inverse

1. Définition et propriété

Définition

La fonction inverse est la fonction définie sur $\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$ par la relation $f(x) = \frac{1}{x}$.

Remarques

- 0 n'a pas d'image par la fonction inverse, on dit que 0 est une « valeur interdite » pour cette fonction.
- Si on multiplie un nombre réel par son inverse, on obtient $1:x \times \frac{1}{x} = 1$.
- Pour tout nombre réel x non nul, l'inverse de $\frac{1}{x}$ est x.

Propriété et définition

- La courbe représentative de la fonction inverse s'appelle une hyperbole.
- Elle est symétrique par rapport à l'origine O du repère.

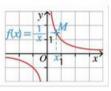


Tableau de valeurs de la fonction inverse

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
f(x)	-0,2	-0,25	≈ -0,33	-0,5	-1	><	1	0,5	≈ 0,33	0,25	0,2

Remarques

- ullet Le tableau de valeurs n'est pas un tableau de proportionnalité, donc f n'est pas linéaire.
- M(x; y) appartient à l'hyperbole si et seulement si $y = \frac{1}{x}$ avec x non nul.

2. Variations de la fonction inverse

Propriété

La fonction inverse est décroissante sur $]-\infty$; 0[et sur]0; $+\infty[$.

x	-00	0	+ 00
1		_	\
x		`	1

Remarques

- Dans le tableau de variation, la double barre sous le 0 signifie que 0 est une valeur interdite, c'est-à-dire que la fonction n'est pas définie pour x = 0.
- ${}^{\bullet}$ On ne peut pas dire que la fonction inverse est décroissante sur $\mathbb{R}^{*}.$ En effet, l'affirmation :
- « Lorsque les valeurs de x augmentent sur \mathbb{R}^* , leurs inverses diminuent » est fausse. Par exemple,
- 1 est plus grand que -2, et 1 (l'inverse de 1) est plus grand que $-\frac{1}{2}$ (l'inverse de -2).

3. Équations et inéquations avec la fonction racine carrée

1. Résolution de l'équation $\sqrt{x} = k$

Propriété

Soit k un nombre réel.

Pour tout réel x positif ou nul, l'équation $\sqrt{x} = k$ a pour ensemble de solutions :

- $\mathcal{G} = \{k^2\}$ si $k \ge 0$:
- $\mathcal{G} = \emptyset$ si k < 0.

✓ Exemple

L'équation $\sqrt{x} = 3$ a pour ensemble de solutions $\mathcal{G} = \{9\}$.

2. Résolution des inéquations $\sqrt{x} \le k$ et $\sqrt{x} \ge k$

Propriété

Soit k un nombre réel.

• Pour tout réel x positif ou nul, l'inéquation $\sqrt{x} \le k$ a pour ensemble de solutions:

$$\mathcal{G} = [0; k^2] \operatorname{si} k \ge 0;$$

 $\mathcal{G} = \emptyset \operatorname{si} k < 0.$

• Pour tout réel x positif ou nul, l'inéquation $\sqrt{x} \ge k$ a pour ensemble de solutions:

$$\mathcal{G} = [k^2; +\infty[\operatorname{si} k \ge 0; \mathcal{G} = [0; +\infty[\operatorname{si} k < 0.$$

Exemples

- L'inéquation $\sqrt{x} \le 1$ a pour ensemble de solutions $\mathcal{G} = [0; 1]$.
- L'inéquation $\sqrt{x} \ge 5$ a pour ensemble de solutions $\mathcal{G} = [25; +\infty[$.

Remarques

On résout de même les inéquations $\sqrt{x} < k$ et $\sqrt{x} > k$.

$$\circ \sqrt{x} < k$$

$$\mathcal{G} = [0; k^2[\operatorname{si} k \geq 0 ;.$$

$$\mathcal{G} = \emptyset \operatorname{si} k < 0.$$

 $\circ \sqrt{x} > k$

$$\mathcal{G} =]k^2; +\infty[si k \ge 0;$$

$$\mathcal{G} = [0; +\infty[$$
 si $k < 0$.

4. Équations et inéquations avec la fonction inverse

1. Résolution de l'équation $\frac{1}{r} = a$

Propriété

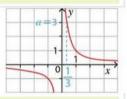
Pour tout réel non nul a, l'équation $\frac{1}{r} = a$ admet pour unique solution $\frac{1}{a}$.

✓ Exemple

On veut résoudre l'équation $\frac{1}{x} = 3$.

$$\frac{1}{x} = 3 \Leftrightarrow x = \frac{1}{3}$$
. La solution de l'équation est $\frac{1}{3}$.

On peut la visualiser sur le graphique ci-contre.



Propriété

Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul.

✓ Exemple

On veut résoudre l'équation $\frac{x+7}{x-1} = 0$.

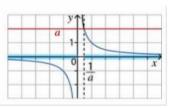
D'après la propriété, on doit avoir x+7=0 et $x-1\neq 0$, autrement dit $x\neq 1$. La solution est donc x = -7.

2. Résolution de l'inéquation $\frac{1}{r} \le a$

Propriété

Pour tout réel non nul a, l'inéquation $\frac{1}{a} \le a$ avec $x \ne 0$ admet une infinité de solutions.

L'ensemble de ces solutions peut s'écrire à l'aide d'intervalles.



L'inéquation $\frac{1}{2} \le 2$ admet pour solutions l'ensemble $]-\infty$; $0[\cup [\frac{1}{2}; +\infty]$.

3. Résolution des inéquations du type $\frac{A(x)}{B(x)} \le 0$ (ou ≥ 0)

Résoudre $\frac{A(x)}{B(x)} \le 0$ ou $\frac{A(x)}{B(x)} \ge 0$ revient à chercher le signe du quotient $\frac{A(x)}{B(x)}$.

Le signe d'un quotient dépend du signe du numérateur et du dénominateur. Pour le déterminer, on réalise un tableau de signes.