Ex 9 : arbre pondéré de probabilité décrivant la situation

probabilité qu'une personne soit malade et ait un test positif : $P(M \cap T) = 0.1 \times 0.9 = 0.09$

probabilité qu'une personne prise au hasard dans la population ait un test positif :

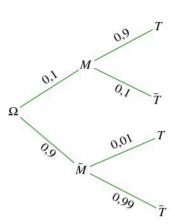
$$P(T) = P(M \cap T) + P(\overline{M} \cap T)$$

 $P(T) = 0.1 \times 0.9 + 0.9 \times 0.01 = 0.099$

probabilité que ce patient soit malade sachant que le test est positif :

$$P_T(M) = \frac{P(M \cap T)}{P(T)} = \frac{0.09}{0.099} \approx 0.909$$
 soit

environ 91%



Ex **10**: Le tableau suivant donne des informations sur les comportements d'achat en ligne dans une population de 90 personnes.

	Achète parfois en ligne	N'achète jamais en ligne	Total
Moins de 50 ans	45	9	54
Plus de 50 ans	12	24	36
Total	57	33	90

probabilité que cette personne ait moins de 50 ans : $P(M) = \frac{54}{90} = 0.6$

probabilité que cette personne ait moins de 50 ans et achète parfois en ligne :

$$P(M \cap A) = \frac{45}{90} = 0.5$$

probabilité qu'elle achète parfois en ligne sachant que la personne interrogée a moins de 50 ans : $P_M(A) = \frac{45}{54} \simeq 0.83$

probabilité qu'elle ait moins de 50 ans sachant que la personne interrogée achète parfois en ligne : $P_A(M) = \frac{45}{57} \approx 0.79$

Ex 11 : arbre pondéré de probabilité décrivant la situation. phrase des événements :

- $A \cup V$: la fiche est celle d'une famille avec au moins un enfant OU la fiche est celle d'un client qui partira avec l'agence
- $A \cap V$: la fiche est celle d'une famille avec au moins un enfant ET la fiche est celle d'un client qui partira avec l'agence

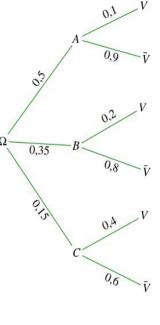
probabilité de l'événement A intersection V : $P(A \cap V) = 0.5 \times 0.1 = 0.05$

probabilité de l'événement : "La fiche est celle d'une famille sans enfant et elle partira pour séjour avec l'agence" : $P(B \cap V) = 0.35 \times 0.2 = 0.07$

On sait que $P(C \cap V) = 0.06$

or
$$P(C \cap V) = 0.15 \times P_C(V)$$

donc $P_C(V) = \frac{0.06}{0.15} = 0.4$



Ex 12: arbre pondéré décrivant la situation

$$p(S) = \frac{50}{300} = \frac{1}{6}, p(D) = \frac{100}{300} = \frac{1}{3}, p(C) = \frac{150}{300}$$

$$p_S(A) = 0.3; p_D(A) = 0.15; p_C(\overline{A}) = 0.9$$

$$p(S \cap A) = \frac{1}{6} \times 0.3 = 0.05$$

$$p(A) = P(S \cap A) + P(D \cap A) + P(C \cap A)$$

donc
$$P(A) = \frac{1}{6} \times 0.3 + \frac{1}{3} \times 0.15 + \frac{1}{2} \times 0.1 = 0.15$$

probabilité que cette personne soit un styliste sachant que la personne choisie a eu au moins une absence cette année :

$$P_A(S) = \frac{P(S \cap A)}{P(A)} = \frac{0.05}{0.15} = \frac{1}{3}$$

