DS3 blanc -Terminale option maths complémentaire

Exercice 1

Déterminer les limites des suites (u_n) définies ci-dessous:

a.
$$n^3 \times 5^n$$

b.
$$n - (\frac{2}{7})^n$$

a.
$$n^3 \times 5^n$$
 b. $n - \left(\frac{2}{7}\right)^n$ c. $\left(\frac{1}{3}\right)^n - \left(\frac{3}{2}\right)^n$ d. $8^n - 3^n$ e. $\frac{5^n - 2^n}{3^n + 2^n}$ f. $\left(\frac{31}{7}\right)^n \cdot \left(\frac{2}{8}\right)^n$

d.
$$8^n - 3^r$$

e.
$$\frac{5^n - 2^n}{3^n + 2^n}$$

f.
$$\left(\frac{31}{7}\right)^n \cdot \left(\frac{2}{8}\right)^n$$

Exercice 2

Déterminer les limites des suites $(u_n)_{n\in\mathbb{N}}$ ci-dessous définies explicitement:

a.
$$u_n = \frac{2n^2 - 3n + 1}{n + 1}$$
 b. $u_n = \frac{n - 3}{n^2 + 1}$

b.
$$u_n = \frac{n-3}{n^2+1}$$

$$u_n = \frac{2\sqrt{n+1}}{\sqrt{n+1}}$$

c.
$$u_n = \frac{2\sqrt{n+1}}{\sqrt{n+1}}$$
 d. $u_n = 1 + n - 2n^2 + 3n^3$

Exercice 3*

On souhaite étudier la suite (u_n) de premier terme $u_0=5$ définie par la relation de récurrence suivante:

$$u_{n+1} = \frac{1}{3}u_n + 4$$
 pour tout $n \in \mathbb{N}$

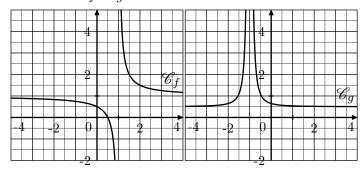
On définit la suite (v_n) par:

$$v_n = u_n - 6$$
 pour tout $n \in \mathbb{N}$

- 1. Montrer que la suite (v_n) est une suite géométrique dont on précisera le premier terme et sa raison.
- Exprimer v_n en fonction du rang n.
- En déduire l'expression de u_n en fonction de n.
- 4. En déduire la limite de la suite (u_n) .

Exercice 4

On munit le plan d'un repère (O; I; J) orthonormé dans lequel sont représentées les courbes \mathscr{C}_f et \mathscr{C}_g représentatives des fonctions f et g:



Graphiquement, donner, si possible, la valeur des limites

a.
$$\lim_{x \to \infty} f(x)$$

b.
$$\lim_{x \to \infty} f(x)$$

$$\lim_{x \to 1^+} f(x)$$

d.
$$\lim_{x \to -\infty} g(x)$$

e.
$$\lim_{x \to +\infty} g(x)$$

a.
$$\lim_{x \mapsto +\infty} f(x)$$
 b. $\lim_{x \mapsto -\infty} f(x)$ c. $\lim_{x \mapsto 1^+} f(x)$ d. $\lim_{x \mapsto -\infty} g(x)$ e. $\lim_{x \mapsto +\infty} g(x)$ f. $\lim_{x \mapsto -1^+} g(x)$

Exercice 5

On considère la fonction g définie par la relation:

$$g(x) = \sqrt{x^2 - 2x + 3}$$

On note \mathscr{C}_g la courbe représentative de la fonction g.

- 1. Déterminer l'ensemble de définition de la fonction q.
- 2. Déterminer l'équation de la tangente à la courbe \mathscr{C}_g au point d'abscisse $\frac{5}{2}$.

Exercice 6*

On considère la fonction f définie sur \mathbb{R} par la relation:

$$f(x) = \frac{x^2 + 2x + 5}{\sqrt{x^2 + 1}}$$

1. Etablir que la dérivée f' de la fonction f admet pour

$$f'(x) = \frac{(x-1)(x^2+x-2)}{(x^2+1)\cdot\sqrt{x^2+1}}$$

2. Dresser le tableau de variations de la fonction f. On admettra les deux limites:

$$\lim_{x \to -\infty} f(x) = +\infty \quad ; \quad \lim_{x \to +\infty} f(x) = +\infty$$

Exercice 7*

On considère la fonction f dont l'image d'un nombre $x \in \mathbb{R}$ est définie par la relation:

$$f(x) = \frac{1}{8} \cdot (x^2 - x - 2)^3$$

Ci-dessous, est donnée la courbe représentative \mathscr{C}_f de la fonction f dans un repère (O; I; J) orthonormé.



- 1. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- Déterminer l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 1. (on utilisera la valeur approchée $f(\frac{1}{2}) \approx -1.4$)

Exercice 8

On considère la fonction f définie par :

$$f: x \longmapsto \sqrt{-2x^2 - x + 6}$$

- 1. Déterminer l'ensemble de définition de la fonction f.
- Donner l'expression de la fonction dérivée de la fonction f.
- 3. Dresser le tableau de variations de la fonction f.