Suites arithmétiques

I) Définition:

Soit n_0 un nombre un entier naturel

Soit $(u_n)_{n\geq n_0}$ une suite. On dit qu'elle est arithmétique si, partant du

TERME INITIAL $u_{n_{n'}}$ pour passer d'un terme au suivant, on

AJOUTE toujours le même nombre appelé RAISON

Exemple : Pour un abonnement internet illimité, un opérateur propose les prix suivants : 40 € de frais d'établissement de ligne et 30 € par mois d'abonnement.

- Le budget total pour un mois d'abonnement est : 40 + 30 = 70 Le budget total pour un mois d'abonnement est de 70 €
- Le budget total pour deux mois d'abonnement est: 70 + 30 = 100 Le budget total pour deux mois d'abonnement est 100 €
- Le budget total pour trois mois d'abonnement est: 100 + 30 = 130 Le budget total pour un trois d'abonnement est de 130 €

Et ainsi de suiteOn additionne 30 au prix du budget total du mois précédent pour obtenir celui du mois suivant

Soit u_1 le budget total pour un mois d'abonnement: $u_1 = 70$

 u_2 est le budget total pour deux mois d'abonnement: $u_2 = u_1 + 30 = 70 + 30 = 100$

 u_3 est le budget total pour trois mois d'abonnement: $u_3 = u_2 + 30 = 100 + 30 = 130$

Soit u_n le budget total pour n mois d'abonnement: $u_n = u_{n-1} + 30$ où u_{n-1} est le budget pour n-1 mois d'abonnement

Cette suite est arithmétique : On passe d'un terme au suivant en ajoutant toujours par le même nombre (dans notre cas 30)

II) Les deux formules de calculs de termes.

 $(u_n)_{n\geq n_0}$ est une suite arithmétique de premier terme u_{n_0} et de raison r ($r \in \mathbb{R}$)

Pour tout n entier naturel , $n \ge n_0$, on a :

$$u_{n+1} = u_n + r$$

On peut aussi obtenir directement la valeur de \boldsymbol{u}_n en appliquant la formule suivante :

$$u_n = u_{n_0} + (n - n_0)r$$

Cas particulier où le 1^{er} rang est $0: u_n = u_0 + nr$

Exemples:

Exemple 1 : Soit (u_n) la suite définie sur \mathbb{N} , par :

$$u_{n+1} = u_n + 3$$
 et $u_0 = 1$

- 1) Justifier que cette suite est arithmétique
- 2) Calculer u_1 ; u_2 ; u_3 puis u_{23}
- 3) Calculer u_n en fonction de n
- 4) A partir de quel rang la suite u est-elle supérieure ou égale à 100 ?

Réponse :

1) Pour tout n appartenant à \mathbb{N} , u_{n+1} - u_n = 3. La suite est donc arithmétique de raison 3 et de 1^{er} terme 1 (Pour passer d'un terme au suivant on ajoute à chaque fois 3).

2)
$$u_1 = u_0 + 3 = 1 + 3 = 4$$
 $u_1 = 4$ $u_2 = u_1 + 3 = 4 + 3 = 7$ $u_2 = 7$ $u_3 = u_2 + 3 = 7 + 3 = 10$ $u_3 = 10$

On applique la 2ème formule :

$$u_{23} = u_0 + 23 \times 3$$

 $u_{23} = 1 + 23 \times 3 = 70$ $u_{23} = 70$

3)
$$u_n = U_0 + n \times 3$$
 $u_n = \mathbf{1} + \mathbf{3} n$

4) $u_n \ge 100$ en utilisant la question précédente on obtient $1 + 3n \ge 100$

 $3\,n \ge 99$ d'où $n \ge 33$. A partir du terme d'indice 33 , u_n est supérieure ou égale à 100

Exemple 2 : Soit (u_n) la suite définie sur $\mathbb N$, par :

$$u_{n+1} = u_n - 2$$
 et $u_1 = 5$

- 1) Justifier que cette suite est arithmétique
- 2) Calculer $u_2\,$; $u_3\,$; $u_4\,$ puis $u_{30}\,$
- 3) Calculer u_n en fonction de n

Réponse :

1) Pour tout n appartenant à \mathbb{N} , u_{n+1} - $u_n = -2$. La suite est donc arithmétique de raison -2 et de 1^{er} terme 5 (Pour passer d'un terme au suivant on ajoute à chaque fois -2).

2)
$$u_2 = u_1 - 2 = 5 - 2 = 3$$
 $u_2 = 3$
 $u_3 = u_2 - 2 = 3 - 2 = 1$ $u_3 = 1$
 $u_4 = u_3 - 2 = 1 - 2 = -1$ $u_4 = -1$

On applique la 2^{ème} formule :

$$u_{30}=u_1+(30-1)\times(-2)$$
 le 1^{er} terme de la suite est U₁ au lieu de U₀
La suite a donc un terme de moins donc
la formule est $u_n=u_1+(n-1)r$

$$u_{30} = 5 + 29 \times (-2) = -53$$
 $u_{30} = -53$

3)
$$u_n = u_1 + (n-1) \times (-2)$$

 $u_n = 5 + (n-1) \times (-2)$ $u_n = 7 - 2n$

Exemple 3 : Soit (u_n) la suite arithmétique définie sur $\mathbb N$ par $u_3=4$ et $u_5=12$. Déterminer la raison et le 1^{er} terme u_0 de u

Réponse :

u est une suite arithmétique de raison r. Pour tous entiers m et n:

$$u_n = u_m + (n - m) r$$

 $u_5 = u_3 + (5 - 3) r$
 $12 = 4 + 2 r donc r = 4.$

Son 1^{er} terme est u_0 : $U_3 = u_0 + 3 \times 4$ on obtient : $12 = u_0 + 12$ donc $u_0 = 0$

La suite arithmétique u a pour raison 4 et a pour 1 er terme $u_0 = 0$

Exemple 4 : Soit (u_n) la suite définie sur \mathbb{N} par $u_n = 3n + 8$ Montrer que u est une suite arithmétique. Préciser sa raison et son 1^{er} terme u_0

Réponse :

Pour tout n appartenant à \mathbb{N} , $u_{n+1}=3(n+1)+8=3n+3+8=3n+11$ Pour tout n appartenant à \mathbb{N} , $u_{n+1}-u_n=3n+11-3n-8=3$

La suite est donc arithmétique de raison 3. $u_0 = 3 \times 0 + 8 = 8$. Son 1^{er} terme est $u_0 = 8$

III) Sens de variation d'une suite arithmétique

Propriété:

Soit $(u_n)_{n\geq n_0}$ une suite arithmétique de raison r

- Si r > 0, alors (u_n) est strictement croissante.
- Si r < 0, alors (u_n) est strictement décroissante.
- Si r = 0, alors (u_n) est constante.

Démonstration:

Soit $(u_n)_{n\geq n_0}$ une suite arithmétique de raison r donc pour tout entier naturel n,

$$u_{n+1} = u_n + r$$
 c'est-à-dire : $u_{n+1} - u_n = r$

- si r > 0 alors pour tout entier naturel n, $u_{n+1} u_n > 0$ La suite (u_n) est donc strictement croissante.
- si r < 0 alors pour tout entier naturel n, $u_{n+1} u_n < 0$ La suite (u_n) est donc strictement décroissante.
- ullet si r = 0 alors pour tout entier naturel n, $u_{n+1}-u_n=0$ ce qui veut dire que pour tout entier naturel n, $u_{n+1}=u_n$. La suite (u_n) est donc constante

Exemples:

Exemple 1:

Etudier le sens de variation de la suite (u_n) définie sur \mathbb{N} , par :

$$u_{n+1} = u_n + 3$$
 et $u_0 = 1$

Réponse :

Pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + 3$

Donc
$$u_{n+1} - u_n = 3$$

Pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n > 0$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc strictement croissante.

Exemple 2:

Etudier le sens de variation de la suite (u_n) définie sur $\mathbb{N} \setminus \{0\}$, par :

$$u_{n+1} = u_n - 2$$
 et $u_1 = 5$

Réponse :

Pour tout $n \in \mathbb{N} \setminus \{0\}$: $u_{n+1} = u_n - 2$

Donc u_{n+1} - $u_n = -2$

Pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n < 0$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc strictement décroissante

IV) Somme des entiers de 1 à n

1) Propriété:

Pour tout entier naturel non nul:

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Cette formule a été proposée par Gauss à l'âge de 11 ans !

Exemple: Calculer S = 1 + 2 + 3 ... + 10

S= 1 + 2 + 3 ...+ 10 =
$$\frac{10 \times 11}{2}$$
 = 55

$$S = 55$$

2) Démonstration:

$$S = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$S = n + (n-1) + (n-2) + \dots + 1$$

On additionne membre à membre les 2 égalités

$$2 S = (1+n) + (2+n-1) + (3+n-2) + \dots + (n-1+2) + (n+1)$$

Chacun des n termes de cette somme est égal à n+1

$$2 S = (1+n) + (1+n) + (1+n) + \dots + (1+n) + (1+n)$$

n termes

$$2 S = n (n + 1)$$

$$S = \frac{n(n+1)}{2}$$