Nombre dérivée

Soit une fonction f définie sur un intervalle ouvert I. Soit $a \in I$.

La fonction f admet un nombre dérivé en a, noté f'(a), si la limite du taux d'accroissement existe et est finie :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad \text{ou} \quad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

♠ On retiendra plutôt la première formulation.

Les physiciens utilisent la notation différentielle $\frac{df}{dx}(a)$

Variation d'une fonction dérivable

Soit une fonction dérivable sur un intervalle I.

- Si f' = 0 sur I, alors f est constante.
- Si f' > 0 sur I, alors f est croissante.
- Si f' < 0 sur I, alors f est décroissante.

Dérivées des fonctions élémentaires

Soit n un entier naturel non nul.

Fonction	Dérivée	Condition
xn	nx ⁿ⁻¹	$x \in \mathbb{R}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	x ∈ R *
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	x ∈]0;+∞

Fonction dérivée

Soit une fonction f définie sur un intervalle I.

Si la fonction f admet un nombre dérivé en chacun des points de I, on dit que la fonction f est dérivable sur I.

On définit alors sur I, la fonction dérivée, notée f', la fonction qui à x associe son nombre dérivé.

 La plupart des fonctions élémentaires sont dérivable sur leur ensemble de définition à part la fonction racine qui est uniquement dérivable sur]0; +∞[

La fonction dérivée

La fonction dérivée est intimement liée à la notion de limite et de tangente.

Règles de dérivation

Somme : (u+v)' = u'+v'

Prd par un scalaire : $(\lambda u)' = \lambda u$

Produit : (uv)' = u'v + uv'

Inverse : $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$

Quotient : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Puissance : $(u^n)' = nu'u^{n-1}$

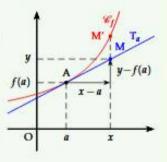
Racine : $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

Interprétations géométrique et numérique

Équation de la tangente T_a en a à la courbe \mathscr{C}_f d'une fonction f dérivable en a:

$$y = f'(a)(x - a) + f(a)$$

Lorsque x est proche de a, le point M' de \mathscr{C}_f est proche du point M de T_a .



On peut alors faire l'approximation affine suivante :

$$f(x) \approx f(a) + (x-a)f'(a)$$

Extremum d'une fonction dérivable

Soit une fonction f sur un intervalle ouvert I contenant c.

- Si c est un extremum de f sur I alors f'(c) = 0
- Si f' s'annule en c en changeant de signe alors c est un extremum de f sur I.

⚠ Les extremum de la fonction sont à chercher parmi les « zéro » de la dérivée mais la condition de changement de signe est essentielle pour avoir un extremum (c.e. fonction cube en 0).

Dérivée et cinématique

En physique, la notion de dérivée est liée au calcul de la vitesse instantanée et de l'accélération.

Si x(t) correspond à la position d'un point M se déplaçant sur l'axe des abscisses, on a alors :

- la vitesse instantanée : v(t) = x'(t)
- l'accélération : a(t) = v'(t) = x"(t)

x" correspond à la dérivée seconde de x soit la dérivée de la dérivée de x