
- Soit le polynôme du second degré f(x) = -5(x-4)(x+11). Déterminer ses racines, puis son signe selon les valeurs de x.
- 73 Résoudre les inéquations du second degré suivantes.
- a.  $2(x-8)(x+9) \ge 0$
- **b.** (x-7)(x+5) < 0
- 74 a. Vérifier que 5 est une racine du polynôme  $-x^2 + 3x + 10$ .
- **b.** Factoriser le polynôme  $-x^2 + 3x + 10$ .
- **c.** Résoudre l'inéquation  $-x^2 + 3x + 10 \le 0$ .
- 75 Proposer une inéquation du second degré ayant pour ensemble solution l'intervalle ] 7 ; 2[.
- 76 Proposer une inéquation du second degré ayant pour ensemble solution la réunion des intervalles ]-∞; 2] et [9; +∞[.
- 77 Un artisan fabrique et vend jusqu'à 15 meubles par semaine. Le bénéfice, exprimé en euros, réalisé par la fabrication et la vente de x meubles est donné par  $B(x) = -10x^2 + 140x 200$  avec  $0 \le x \le 15$ .
- **1.a.** Vérifier que B(4) = 200.
- **b.** Résoudre dans l'intervalle [0 ; 15] l'inéquation  $B(x) \ge 200$ .
- Interpréter ce résultat.
- 78 Un groupe d'élèves réalise et vend un journal. Les coûts d'impression, exprimés en euros, de x journaux sont donnés par :  $C(x) = 0.005x^2 0.5x + 49.5$  avec  $0 \le x \le 400$ .

En vendant x journaux, les revenus, exprimés en euros, sont donnés par R(x) = 1.3x avec  $0 \le x \le 400$ .



- a. Montrer que l'inéquation
- R(x) > C(x) est équivalente à  $-0.005x^2 + 1.8x 49.5 > 0$ .
- b. Vérifier que 30 est une racine du polynôme :
  - $-0.005x^2 + 1.8x 49.5$ , puis le factoriser.
- Déterminer pour quels volumes de vente les élèves réalisent un bénéfice.
- Soit f la fonction définie sur  $\mathbb{R}$  par : f(x) = -8(x + 2,5)(x 3,5).
- a. Déterminer les variations de f et son extremum.
- **b.** Donner l'allure de la courbe de *f* en précisant son axe de symétrie.
- **c.** Donner les racines def(x) et déterminer graphiquement son signe selon les valeurs de(x).
- 89 Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = 3x^2 12x$ .
- **1. a.** Déterminer les racines de f(x).
- **b.** Écrire f(x) sous forme factorisée.
- Déterminer les variations de f et son extremum.
- 3. Donner l'allure de la courbe de f en précisant son axe de symétrie.

- 72 Soit le polynôme du second degré f(x) = -5(x-4)(x+11). Déterminer ses racines, puis son signe selon les valeurs de x.
- Résoudre les inéquations du second degré suivantes.
- **a.**  $2(x-8)(x+9) \ge 0$

1<sup>ère</sup> STMG2

- **b.** (x-7)(x+5) < 0
- **74** a. Vérifier que 5 est une racine du polynôme  $-x^2 + 3x + 10$ .
- **b.** Factoriser le polynôme  $-x^2 + 3x + 10$ .
- **c.** Résoudre l'inéquation  $-x^2 + 3x + 10 \le 0$ .
- 75 Proposer une inéquation du second degré ayant pour ensemble solution l'intervalle ] 7 ; 2[.
- 76 Proposer une inéquation du second degré ayant pour ensemble solution la réunion des intervalles  $]-\infty$ ; 2] et [9;  $+\infty$ [.
  - 77 Un artisan fabrique et vend jusqu'à 15 meubles par semaine. Le bénéfice, exprimé en euros, réalisé par la fabrication et la vente de x meubles est donné par  $B(x) = -10x^2 + 140x 200$  avec  $0 \le x \le 15$ .
  - **1.a.** Vérifier que B(4) = 200.
  - **b.** Résoudre dans l'intervalle [0 ; 15] l'inéquation  $B(x) \ge 200$ .
- 2. Interpréter ce résultat.
- 78 Un groupe d'élèves réalise et vend un journal. Les coûts d'impression, exprimés en euros, de x journaux sont donnés par :  $C(x) = 0.005x^2 0.5x + 49.5$  avec  $0 \le x \le 400$ .

En vendant x journaux, les revenus, exprimés en euros, sont donnés par R(x) = 1,3x avec  $0 \le x \le 400$ .



a. Montrer que l'inéquation

R(x) > C(x) est équivalente à  $-0.005x^2 + 1.8x - 49.5 > 0$ .

b. Vérifier que 30 est une racine du polynôme :

$$-0.005x^2 + 1.8x - 49.5$$
, puis le factoriser.

- c. Déterminer pour quels volumes de vente les élèves réalisent un bénéfice.
- **88** Soit f la fonction définie sur  $\mathbb R$  par :

$$f(x) = -8(x + 2.5)(x - 3.5).$$

- a. Déterminer les variations de f et son extremum.
- **b.** Donner l'allure de la courbe de *f* en précisant son axe de symétrie.
- **c.** Donner les racines def(x) et déterminer graphiquement son signe selon les valeurs de(x).
  - 89 Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = 3x^2 12x$ .
- **1. a.** Déterminer les racines de f(x).
- **b.** Écrire f(x) sous forme factorisée.
- 2. Déterminer les variations de f et son extremum.
- 3. Donner l'allure de la courbe de f en précisant son axe de symétrie.