Tale Maths Complémentaire - TD 2 - Continuité

Exercice 1

On considère la fonction f définie sur $\mathbb R$ par la relation:

- 1. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- (a.) Justifier que l'équation f(x)=1 admet une unique solution sur l'intervalle $\left[-3;\frac{1}{3}\right]$.
 - (b.) A l'aide de la calculatrice, déterminer la valeur approchée au centième près de cette solution.

Exercice 2*

On considère la fonction f définie sur $\mathbb R$ par la relation: $f(x) = \frac{4 \cdot x + 3}{x^2 + 1}$

$$f(x) = \frac{4 \cdot x + 3}{x^2 + 1}$$

(a.) Etablir que la fonction f', dérivée de la fonction f, admet pour expression:

$$f'(x) = \frac{-4 \cdot x^2 - 6 \cdot x + 4}{\left(x^2 + 1\right)^2}$$

- (b.) Dresser le tableau de variations de la fonction f sur [-5;5]
- (a.) Justifier que l'équation f(x)=3 admet deux solutions, notées α et β , sur l'intervalle [-5; 5].
 - (b.) Donner les valeurs approchées de α et β au millième près.

Exercice 3

On considère la fonction f définie et dérivable sur \mathbb{R} et dont la fonction dérivée admet le tableau de signes ci-dessous:

x	$-\infty$		1	-			Į	5		$+\infty$
f'(x)		_	()	_	+	()	_	

De plus, l'équation f(x)=0 admet pour ensemble de solutions: $\mathcal{S} = \{3\}$

Dresser le tableau de signes en justifiant votre démarche.

Exercice 4*

On considère la fonction f définie sur \mathbb{R} par:

$$f(x) = x \cdot e^x - e^x - 1$$

- Montrer que la fonction f est strictement croissante sur $|0;+\infty|$
- (a.) Montrer que l'équation f(x) = 0 possède une unique solution, notée α , dans [0;2].
 - (b.) A l'aide de la calculatrice, donner un encadrement à
- 3. En déduire le tableau de signes de f(x) sur $[0; +\infty]$.